Published online by Cambridge University Press: 01 January 1992
The melting of crystalline silicon and the cooling of liquid silicon are investigated using Molecular Dynamics. Both the Stillinger-Weber (SW) potential and the Tight-Binding Bond Model are used to calculate the forces. The electrical properties are investigated using an empirical pseudopotential method with a plane wave basis. The melting point of the solid is found to be about 2300K. The dependency of this temperature with cell size is investigated. On cooling, there are changes in some of the properties of the liquid: the energy per particle decreases, the diffusion constant decreases, and the low frequency electrical conductivity decreases slightly as the temperature decreases. Between 1180K and 980K the liquid undergoes a transition to a glassy phase. There are large changes in the pair correlation function, the SW three-body energy distribution, the diffusion constant, the density of electron single particle states and the electrical conductivity. All of these changes are consistent with increased tetrahedral bonding.