Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:59:17.595Z Has data issue: false hasContentIssue false

TiCp2Cl-Catalyzed Living Radical and Ring Opening Polymerizations Initiated from Epoxides and Aldehydes in the Synthesis of Linear, Graft and Branched Polymers

Published online by Cambridge University Press:  01 February 2011

Alexandru D. Asandei
Affiliation:
Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT 06269. Department of Chemistry, University of Connecticut, Storrs, CT 06269.
Isaac W. Moran
Affiliation:
Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT 06269.
Gobinda Saha
Affiliation:
Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT 06269.
Yanhui Chen
Affiliation:
Department of Chemistry, University of Connecticut, Storrs, CT 06269.
Get access

Abstract

Ti(III)Cp2Cl-catalyzed radical ring opening (RRO) of epoxides or single electron transfer (SET) reduction of aldehydes generates Ti alkoxides and carbon centered radicals which add to styrene, initiating a radical polymerization. This polymerization is mediate in a living fashion by the reversible termination of growing chains with the TiCp2Cl metalloradical. In addition, polymers or monomers containing pendant epoxide groups (glycidyl methacrylate) can be used as substrates for radical grafting or branching reactions by self condensing vinyl polymerization. In addition, Ti alkoxides generated in situ by both epoxide RRO and aldehyde SET initiate the living ring opening polymerization of ε-caprolactone. Thus, new initiators and catalysts are introduced for the synthesis of complex polymer architectures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Rajanbabu, T.V. and Nugent, W.A. J. Am. Chem. Soc. 116, 986 (1994).Google Scholar
(b) Gansauer, A., Lauterbach, T., Bhlum, H. and Noltemeyer, M. Angew. Chem. Int. Ed. Engl. 38, 2909 (1999).Google Scholar
2. Green, M. H. and Lucas, C. R. J. Chem. Soc., Dalton Trans. 1000 (1972).Google Scholar
3. Jungst, R., Sekutowski, D., Davis, J., Luly, M. and Stucky, J., J. Inorg. Chem. 16, 645 (1977).Google Scholar
4. Ashby, E. C. Acc. Chem. Res. 21, 414 (1988).Google Scholar
5. Asandei, A. D. and Moran, I. W. J. Am. Chem. Soc. 126, 15932, (2004).Google Scholar
6. Okuda, J. and Rushkin, I. L. Macromolecules 26, 5530 (1993).Google Scholar
7. (a) Asandei, A. D., Moran, I. W. and Castro, M. Polym. Prepr. 44(1), 829 (2003).Google Scholar
(b) Asandei, A. D. and Moran, I. W Polym. Prepr. 44(1), 831 (2003).Google Scholar
Asandei, A. D. and Saha, G. Polym. Prepr. 45(1), 999 (2004).Google Scholar
(c) Asandei, A. D. and Moran, I. Polym. Prepr. 44(2), 793 (2003).Google Scholar
(d) Asandei, A. D., Chen, Y. Polym. Prepr. 45(2), 766 (2004),Google Scholar
(e) Asandei, A. D. and Chen, Y. Polym. Prepr. 45(1), 1001 (2004).Google Scholar
(f) Asandei, A. D. and Saha, G. Polym. Prepr. 45(2), 768 (2004).Google Scholar
(g) Asandei, A. D. and Saha, G. Polym. Prepr. 45(1), 999 (2004).Google Scholar
(h) Asandei, A. D., Moran, I. W., Saha, G., Chen, Y. and Juzyn, K. Polym. Prepr. 45(2), 772 (2004)Google Scholar
(i) Asandei, A. D., Erkey, C., Burgess, D., Saha, C. G., and Zolnik, B. Polym. Prepr. 45(2), 770 (2004).Google Scholar
(j) Asandei, A. D., Erkey, C., Burgess, D., C., , Saha, G., and Zolnik, B. Polym. Prepr. 45(1), 1014 (2004).Google Scholar
(k) Asandei, A. D., Moran, I., Saha, G. and Chen, Y. Polym. Mater.: Sci. Eng. 91, 786 (2004).Google Scholar
(l) Asandei, A. D., and Saha, G., Macromol. Rapid Commun, submitted (2005)Google Scholar
8. Matyjaszewski, K. and Xia, J. Macromolecules 30, 7692 (1997).Google Scholar
9. Frechet, J. M. J., Henmi, M., Gitsov, I., Leduc, S. and Grubbs, R. B. Science 269, 1080 (1995).Google Scholar
10. Rich, J., Karjalainen, T., Ahjopalo, L. and Seppa, J., J. Appl. Polym. Sci. 86, 1 (2002).Google Scholar
11. Top, S., Kaloun, E., Vessieres, A., Laios, I., Leclercq, G., J. Organomet. Chem. 643, 350 (2002).Google Scholar