Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T16:18:56.997Z Has data issue: false hasContentIssue false

THz Emission from InN

Published online by Cambridge University Press:  31 January 2011

Hyeyoung Ahn
Affiliation:
[email protected], National Chiao Tung University, Department of Photonics, Hsinchu, Taiwan, Province of China
Yi-Jou Yeh
Affiliation:
[email protected], National Chiao Tung University, Department of Photonics, Hsinchu, Taiwan, Province of China
Yu-Liang Hong
Affiliation:
[email protected], National Tsing Hua University, Department of Physics, Hsinchu, Taiwan, Province of China
Shangjr Gwo
Affiliation:
[email protected], National Tsing Hua University, Department of Physics, Hsinchu, Taiwan, Province of China
Get access

Abstract

We report the terahertz (THz) emission from the wurzite indium nitride (InN) films grown by molecular beam epitaxy (MBE). More than two orders of magnitude of THz power enhancement has been achieved from the InN film grown along the a-axis and magnesium (Mg) doped InN with a critical carrier concentration. The primary radiation mechanism of the a-plane InN film is found to be due to the acceleration of photoexcited carriers under the polarization-induced in-plane electric field perpendicular to the a-axis. Apparent azimuthal angle dependences of THz wave amplitude and the second harmonic generation are observed from a-plane InN. In the Mg-doped films, Mg as the acceptors compensate the native donors in the InN films and large band bending over a wider space-charge region causes the enhancement of THz emission power compared to the undoped InN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Acsazubi, R., Wilke, I., Denniston, K., Lu, H. L., and Schaff, W. J., Appl. Phys. Lett. 84, 4810 (2004).Google Scholar
2 Pradarutti, B., Matthäus, G., Brückner, C., Riehemann, S., Notni, G., Nolti, S., Cimalla, V., Lebedev, V., Ambacher, O., and Tünnermann, A., Proc. of SPIE vol. 6194, 619401 (2006).Google Scholar
3 Cimalla, V., Pradarutti, B., Matthäus, G., Brückner, C., Riehemann, S., Notni, G., Nolte, S., Tünnermann, A., Lebedev, V., and Ambacher, O., Phys. Stat. Sol. B 244, 1829 (2007).Google Scholar
4 Chern, G. D., Readinger, E. D., Shen, H., Wraback, M., Gallinat, C. S., Koblmuller, G., and Speck, J. S., Appl. Phys. Lett. 89, 141115 (2006).Google Scholar
5 Ahn, H., Ku, Y.-P., Wang, Y.-C., Chuang, C.-H., Gwo, S., and Pan, Ci-Ling, Appl. Phys. Lett. 91, 132108 (2007).Google Scholar
6 Jones, R. E., Yu, K. M., Li, S. X., Walukiewicz, W., Ager, J. W., Haller, E. E., Lu, H., and Schaff, W. J., Phys. Rev. Lett. 96, 125505 (2006).Google Scholar
7 Ahn, H., Ku, Y.-P., Wang, Y.-C., Chuang, C.-H., Gwo, S., and Pan, C.L., Appl. Phys, Lett. 91, 163105 (2007).Google Scholar
8 Ahn, H., Chuang, C.-H., Ku, Y.-P., and Pan, C.-L., J. Appl. Phys. 105, 023707 (2009).Google Scholar
9 Wilke, I., Ascazubi, R., Lu, H., and Schaff, W. J., Appl. Phys. Lett. 93, 221113 (2008).Google Scholar
10 Fujiwara, M., Ishitani, Y., Wang, X., Che, S.-B., and Yoshikawa, A., Appl. Phys. Lett. 93, 231903 (2008).10.1063/1.3006052Google Scholar
11 Ahn, H., Pan, C.-L., and Gwo, S., Proc. of SPIE, 7216, 72160T (2009).Google Scholar
12 Lin, K. I., 1, Tsai, J. T., Wang, T. S., Hwang, J. S., Chen, M. C., and Chi, G. C., Appl. Phys. Lett. 93, 262102 (2008).10.1063/1.3056635Google Scholar
13 Johnston, M. B., Whittaker, D. M., Corchia, A., Davies, A. G., and Linfield, E. H., Phys. Rev. B 65, 165301 (2002).Google Scholar
14 Johnston, M. B., Whittaker, D. M., Dowd, A., Davies, A. G., Linfield, E. H., Li, X., and Ritchie, D. A., Opt. Lett. 27, 1935 (2002).Google Scholar
15 Estacio, E., Sumikura, H., Murakami, H., Tani, M., Sarukura, N., and Hangyo, M., Apply. Phys. Lett. 90, 151915 (2007).Google Scholar
16 Chang, Y. M., Hong, Y.-L., and Gwo, S., Appl. Phys. Lett. 93, 131106 (2008).Google Scholar
17 Reid, M., Cravetchi, I. V., Fedosejevs, R., Phys. Rev. B 72, 035201 (2005).Google Scholar
18 Ascazubi, R., Shneider, C., Wilke, I., Pino, R., and Dutta, P. S., Phys. Rev. B 72, 045328 (2005).Google Scholar
19 Ahn, H., Shen, C.-H., Wu, C.-L., and Gwo, S., Appl. Phys. Lett. 86, 201905 (2005).Google Scholar