Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T10:23:24.780Z Has data issue: false hasContentIssue false

Three-Dimensional Superlattice Packing of Faceted Silver Nanocrystals

Published online by Cambridge University Press:  10 February 2011

S. A. Harfenist
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA. 30332–0430
Z. L. Wang
Affiliation:
Schools of Physics, Chemistry, and Microelectronics Research Center, Georgia Institute of Technology, Atlanta, GA. 30332–0430
M. M. Alvarez
Affiliation:
Schools of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA. 30332–0245
I. Vezmar
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA. 30332–0430
R. L. Whetten
Affiliation:
Schools of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA. 30332–0245
Get access

Abstract

Orientational ordering of faceted nanocrystals in nanocrystal arrays has been directly observed for the first time, by use of transmission electron microscopy imaging and diffraction to resolve the structure of thin molecular-crystalline films of silver nanocrystals passivated by alkylthiolate self-assembled monolayers. The type of ordering found is determined by the nanocrystals faceted morphology, as mediated by the interactions of surfactant groups tethered to the facets on neighboring nanocrystals. Orientational ordering is crucial for the understanding of the fundamental properties of quantum-dot arrays, as well as for their optimal utilization in optical and electronic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. deHeer, W., Rev. Mod. Phys. 65, p. 611 (1993);Google Scholar
Schmid, G., Chem. Rev. 92, p.1709 (1992).Google Scholar
2. Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Fujii, K., Hayakawa, J., Satou, M., J. Appl. Phys. 75, p.3075 (1994).Google Scholar
3. Brust, M., Bethell, D., Schriffin, D. J., Kiely, C. J., Adv. Mater. 7, p.795 (1995).Google Scholar
4. Dorogi, M., Gomez, J., Osifchin, R., Andres, R. P., Reifenberger, R., Phys. Rev. B52, p. 9071 (1995);Google Scholar
Andres, R. P., Bein, T., Dorogi, M., Feng, S., Henderson, J. I., Kubiak, C. P., Mahoney, W., Osifchin, R. G., Reifenberger, R., Science 272, p. 1323 (1996).Google Scholar
5. First, P., et al., to be published.Google Scholar
6. Patii, A., Paithankar, D. Y., Otsuka, N., Andres, R. P., Z. Phys. D26, p. 135 (1993); for review, seeGoogle Scholar
Marks, L. D., Rep. Prog. Phys. 57, p. 603 (1994).Google Scholar
7. Cleveland, C. and Landman, U., J. Chem. Phys. 94, p. 7376 (1991).Google Scholar
8. For a recent discussion, see: Reetz, M. T., Helbig, W., Quaiser, S. A., Stimmung, U., Breuer, N., Vogel, R., Science 267, p. 367 (1995).Google Scholar
9. Whetten, R. L., Khoury, J. T., Alvarez, M. M., Murthy, S., Vezmar, I., Wang, Z. L., Cleveland, C. L., Luedtke, W. D., Landman, U., in “Chemical Physics of Fullerenes 5 and 10 Years Later”, edited by Andreoni, W. (Kluwer, Dordrecht, 1996), pp. 475.Google Scholar
10. Murray, C. B., Kagan, C. R., Bawendi, M. G., Science 270, p. 1335 (1995).Google Scholar
For earlier work on ‘supercrystals’, see Bentzon, M. D., van Wonterghem, J., Mørup, S., Thölén, A., Koch, C. J. W., Phil. Mag. B60, p. 169 (1989).Google Scholar
11. Whetten, R. L., Khoury, J. T., Alvarez, M. M., Murthy, Srihari, Vezmar, I., Wang, Z. L., Stephens, P. W., Cleveland, C. L., Luedtke, W. D., Landman, U., Adv. Mater. 5, p. 428433 (1996).Google Scholar
12. For example, see: Heiney, P. A., Fischer, J. E., McGhie, A. R., Womanow, W. J., Denenstein, A. M., McCauley, J. P., Smith, A. B., Phys. Rev. Lett. 66, p. 2911 (1991).Google Scholar
13. Buffat, P.-A., Flüeli, M., Spycher, R., Stadelmann, P., Borei, J.-P., Faraday Discuss. 92, p. 173- (1991).Google Scholar
14. Harfenist, S. A., Wang, Z. L., Alvarez, M. M., Vezmar, I., Whetten, R. L., J. Phys. Chem. 100 p. 13904 (1996).Google Scholar