Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:29:36.356Z Has data issue: false hasContentIssue false

Three-Dimensional Patterning of Micro/Nanoparticle Assembly with a Single Droplet of Suspension

Published online by Cambridge University Press:  03 March 2011

Sun Choi
Affiliation:
Berkeley Sensor and Actuator Center (BSAC) Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, USA
Albert P. Pisano
Affiliation:
Berkeley Sensor and Actuator Center (BSAC) Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, USA
Tarek I. Zohdi
Affiliation:
Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, USA
Get access

Abstract

We develop a novel patterning technique to create 3D patterns of micro, nanoparticle assembly via evaporative self-assembly based on confinement/release of micro/nano particles assembly based on the coffee-ring effect of evaporating suspension. Based on the presented technique, we demonstrate that the patterns of 3D assembly of various sizes of microparticles (Silica), metal oxide nanoparticles (TiO2, ZnO) and metallic nanoparticles (Ag) can be successfully generated by low-concentrated particle suspension (1.25 wt % ~ 5 wt %) without additional sintering steps and we also show the geometries of the patterns can be finely controlled by adjusting the parameters of the process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Joannopolous, J. D., Villeneuve, P. R. and Fan, S. Nature 1997, 386, 143.Google Scholar
[2] Norris, D. J. nature material 2007, 6, 177.Google Scholar
[3] Hynninen, A., Thijssen, J. H. J., Vermolen, E. C. M., Dijkstra, M. and Blaaderen, A. V. nature materials 2007, 6, 202.Google Scholar
[4] Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X., Park, S., Xiong, Y., Yoon, J., Nuzzo, R. G., Rogers, J. A. and Lewis, J. A. Science 2009, 323, 1590.Google Scholar
[5] Briseno, A. L., Mannsfeld, S. C. B., Ling, M. M., Liu, S., Tseng, R. J., Reese, C., Roberts, M. E., Yang, Y., Wudl, F. and Bao, Z. Nature 2006, 444, 913.Google Scholar
[6] Aoki, K., Guimard, D., Nishioka, M., Nomura, M., Iwamoto, S. and Arakawa, Y. nature photonics 2008, 2, 688.Google Scholar
[7] Noda, S. and Fujita, M., nature photonics 2009, 3, 129.Google Scholar
[8] Graham-rowe, D., nature photonics 2009, 3, 307.Google Scholar
[9] Barnes, W. L., Dereux, A. and Ebbesen, T. W. Nature 2003, 424, 824.Google Scholar
[10] Lal, S., Link, S. and Halas, N. J nature photonics 2007, 1, 641.Google Scholar
[11] Imhof, A. and Pine, D. J. Nature 1999, 389, 958.Google Scholar
[12] Qin, D., Xia, Y., Xu, B., Yang, H., Zhu, C. and Whitesides, G.M., Adv. Mater. 1999, 11, 1433.Google Scholar
[13] Lu, M. H. and Zhang, Y. Adv. Mater. 2006, 18, 3094.Google Scholar
[14] Fan, F. and Stebe, K. J. Langmuir 2004, 20, 3062.Google Scholar
[15] Park, I., Ko, S. H., Pan, H., Grigoropoulos, C. P., Pisano, A. P., Fréchet, J. M. J., Lee, E. and Jeong, J. Adv. Mater. 2008, 20, 489.Google Scholar
[16] Kim, E., Xia, Y. and Whitesides, G. M. Adv. Mater. 1996, 8, 245.Google Scholar
[17] Kraus, T., Malaquin, L., Schmid, H., Riess, W., Spencer, N. D. and Wolf, H. nature nanotechnology 2007, 2, 570.Google Scholar
[18] Dushkin, C. D., Yoshimura, H. and Nagayama, K. Chem. Phys. Lett. 1993, 204, 455.Google Scholar
[19] Bowden, N., Terfort, A., Carbeck, J. and Whitesides, G. M. Science 1997, 276, 233.Google Scholar
[20] Denkov, N. D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yoshimura, H. and Nagayama, K. Nature 1993, 361, 26.Google Scholar
[21] Rabani, E., Reichman, D. R., Geissler, P. L. and Brus, L. E. Nature 2003, 426, 271.Google Scholar
[22] Blaaderen, A. V. Science 1998, 30, 887.Google Scholar
[23] Fudouzi, H. and Xia, Y. Langmuir 2003, 19, 9653.Google Scholar
[24] Matsushita, S. I., Yagi, Y., Miwa, T., Tryk, D. A., Koda, T. and Fujishima, A. Langmuir 2003, 16, 636.Google Scholar
[25] Prevo, B. G., Hon, E. W. and Velev, O. D. J. Mater. Chem. 2007, 17, 791.Google Scholar
[26] Miyaki, M., Fujimoto, K. and Kawaguchi, H. Colloids and Surfaces A: Physiochem. Eng. Aspects 1999, 153, 603.Google Scholar
[27] Kuncicky, D. M., Prevo, B. G. and Velev, O. D. J. Mater. Chem. 2006, 16, 1207.Google Scholar
[28] Holland, B. R., Blanford, C. F., Do, T. and Stein, , Chem. Mater. 1999, 11, 795805 Google Scholar
[29] Velev, O. D., Tessier, P. M., Lenhoff, A. M. and Kaler., E. W. Nature 1999, 401, 548.Google Scholar