Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:24:02.684Z Has data issue: false hasContentIssue false

Three-Dimensional Electronic Surfaces

Published online by Cambridge University Press:  17 March 2011

J.C. Sturm
Affiliation:
Center for Photonics and Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544USA609-258-5610, 609-258-1954, [email protected]
P.I. Hsu
Affiliation:
Center for Photonics and Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544USA609-258-5610, 609-258-1954, [email protected]
S.M. Miller
Affiliation:
Center for Photonics and Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544USA609-258-5610, 609-258-1954, [email protected]
H. Gleskova
Affiliation:
Center for Photonics and Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544USA609-258-5610, 609-258-1954, [email protected]
A. Darhuber
Affiliation:
Center for Photonics and Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544USA609-258-5610, 609-258-1954, [email protected]
M. Huang
Affiliation:
Center for Photonics and Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544USA609-258-5610, 609-258-1954, [email protected]
S. Wagner
Affiliation:
Center for Photonics and Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544USA609-258-5610, 609-258-1954, [email protected]
S. Troian
Affiliation:
Center for Photonics and Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544USA609-258-5610, 609-258-1954, [email protected]
Z. Suo
Affiliation:
Center for Photonics and Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544USA609-258-5610, 609-258-1954, [email protected]
Get access

Abstract

There is an increasing interest in electronics functionality on surfaces which are not planar. This paper examines the critical technologies for fabricating electronic surfaces which have a three-dimensional shape. Two different approaches for achieving such a goal are examined. One can fabricate electronics using conventional technologies on a flat surface, and then after fabrication deform that surface into the desired shape (e.g. a spherical cap). In an alternative approach, one can directly fabricate onto substrates with an arbitrary shape. In this case one must address the issue of pattern formation and transfer on the curved surfaces. The scaling of letterpress printing to micron-scale features on flat and spherically curved surfaces is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hsu, P-H.I., Huang, M., Wagner, S., Suo, Z., and Sturm, J.C., Proc. Symp. Mat. Res. Soc. 621, Spring 2000.Google Scholar
2. Gleskova, H., Wagner, S., and Suo, Z., Mat. Res. Soc. Proc. Symp. 508, 73 (1998).Google Scholar
3. Theiss, S.D. and Wagner, S., IEEE Elec. Dev. Lett. 17, 578580 (1996).Google Scholar
4. Ma, E. Y., Theiss, S. D., Lu, M. H., Wu, C. C., Sturm, J. C., and Wagner, S., Tech. Dig. Int. Elect. Dev. Mtg., 535538 (1997).Google Scholar
5. Gleskova, H., Wagner, S. and Suo, Z., Appl. Phys. Lett. 75, 30113013 (1999).Google Scholar
6. Thomasson, D. B., Bonse, M., Huang, J. R., Wronski, C. R., and Jackson, T. N., Tech. Dig. Int. Elect. Dev. Mtg., 253256 (1998).Google Scholar
7. Parsons, G.N., Yang, C.S., Arthur, C.B., Klein, T.M., and Smith, L., Mat. Res. Soc. Symp. Proc 508, 19 (1998).Google Scholar
8. Constant, A., Burns, S. G., Shanks, H., Constant, A., Gruber, C., Schmidt, D., Landin, A., and Olympie, F., Proc. Electrochem. Soc. 96–23, 382 (1997).Google Scholar
9. Suo, Z., Ma, E.Y., Gleskova, H. and Wagner, S., App. Phys. Lett. 74, 1177 (1999).Google Scholar
10. Kumar, A., Biebuyck, H. A., and Whitesides, G. M., Langmuir. 10, 1498 (1994).Google Scholar
11. Xia, Younan, and Whitesides, George M., Angew. Chem. Int. Ed. 37, 551 (1998).Google Scholar
12. Bao, Zhenan, Rogers, John A., and Katz, Howard, J. Mater. Chem. 9, 1895 (1999).Google Scholar
13. Bruno, Michael H., ed., Pocket Pal: A Graphic Arts Production Handbook, 16th ed., International Paper Company, 1995.Google Scholar
14. Mikami, Yoshiro et al. , IEEE Trans. Electron Devices 41, 306 (1994).Google Scholar
15. Lahti, M., Leppävuori, S., and Lantto, V., Appl. Surf. Sci. 142, 367 (1999).Google Scholar
16. Chou, Stephen Y., Krauss, Peter R., and Renstrom, Preston J., J. Vac. Sci. Technol. B, 14, 4129 (1996).Google Scholar
17. Heidari, Babek, Maximov, Ivan, Sarwe, Eva-Lena, and Montelius, Lars, J. Vac. Sci. Technol. B 17, 2961 (1999).Google Scholar
18. Darhuber, Anton A., Troian, Sandra M., Miller, Scott M., and Wagner, Sigurd, J. Appl. Phys. 87, 7768 (2000).Google Scholar
19. Miller, Scott M., Darhuber, Anton A., Troian, Sandra M., and Wagner, Sigurd in Materials Development for Direct Write Technologies edited by Chrisey, D.B. et al. (Mater. Res. Soc. Proc. 624, Pittsburgh, PA in press).Google Scholar
20. Darhuber, Anton A., Miller, Scott M., Troian, Sandra M., and Wagner, Sigurd in Materials Development for Direct Write Technologies edited by Chrisey, D.B. et al. (Mater. Res. Soc. Proc. 624, Pittsburgh, PA in press).Google Scholar
21. Darhuber, Anton A., Troian, Sandra M., Davis, Jeffrey M., Miller, Scott M., and Wagner, Sigurd, J. Appl. Phys. 88, 5119 (2000).Google Scholar
22. Gokan, H., Esho, S., and Ohnishi, Y., J. Electrochem. Soc. 130, 143 (1983).Google Scholar
23. Harrison, C., Park, M., Chaikin, P. M., Register, R. A., and Adamson, D. H., J. Vac. Sci. Technol. B 16, 544 (1998).Google Scholar