No CrossRef data available.
Article contents
Three Dimensional Morphology and Compressive Behaviour of Sintered Biodegradable Composite Scaffolds
Published online by Cambridge University Press: 01 February 2011
Abstract
Porous poly-L-lactide acid (PLA) scaffolds are prepared using polymer sintering and porogen leaching method. Different weight fractions of the Hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three dimensional morphology and surface porosity are tested using micro CT, optical microscopy and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change by addition of HA. The micro Ct examinations show slight decrease in the pore size and increase in wall thickness accompanied with reduced anisotropy for the scaffolds containing HA. SEM micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA which blocks some of the pores. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA adversely affects the modulus of the scaffold at the first stage, but this was reversed for the second and third stages of the compression. The results of these tests are compared with the cellular material model. The manufactured scaffold have acceptable properties for a scaffold, however improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008