Article contents
Thin Film Synthesis Using Miniature Pulsed Metal Vapor Vacuum arc Plasma Guns
Published online by Cambridge University Press: 21 February 2011
Abstract
Metallic coatings can be fabricated using the intense plasma generated by the metal vapor vacuum arc. We have made and tested an embodiment of vacuum arc plasma source that operates in a pulsed mode, thereby acquiring precise control over the plasma flux and so also over the deposition rate, and that is in the form of a miniature plasma gun, thereby allowing deposition of metallic thin films to be carried out in confined spaces and also allowing a number of such guns to be clustered together.
The plasma is created at the cathode spots on the metallic cathode surface, and is highly ionized and of directed energy a few tens of electron volts. Adhesion of the film to the substrate is thus good. Virtually all of the solid metals of the Periodic Table can be used, including highly refractory metals like tantalum and tungsten. Films, including multilayer thin films, can be fabricated of thickness from Angstroms to microns. We have carried out preliminary experiments using several different versions of miniature, pulsed, metal vapor vacuum arc plasma guns to fabricate metallic thin films and multilayers.
Here we describe the plasma guns and their operation in this application, and present examples of some of the thin film structures we have fabricated, including yttrium and platinum films of thicknesses from a few hundred Angstroms up to 1 micron and an yttrium-cobalt multilayer structure of layer thickness about 100 Angstroms.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991
References
REFERENCES
- 10
- Cited by