Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:39:46.900Z Has data issue: false hasContentIssue false

Thin film micro arrays with immobilized DNA for hybridization analysis

Published online by Cambridge University Press:  01 February 2011

F. Fixe
Affiliation:
Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal INESC Microsystems and Nanotechnologies, Lisbon, Portugal
A. Faber
Affiliation:
Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
D. Gonçalves
Affiliation:
Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
D.M.F. Prazeres
Affiliation:
Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
R. Cabeça
Affiliation:
INESC Microsystems and Nanotechnologies, Lisbon, Portugal
V. Chu
Affiliation:
INESC Microsystems and Nanotechnologies, Lisbon, Portugal
G. Ferreira
Affiliation:
Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve, Faro, Portugal
J.P. Conde
Affiliation:
Department of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
Get access

Abstract

In this work, a procedure to immobilize DNA probes on a microarray patterned on a flexible plastic substrate is developed. The method involves the chemical activation of a thin film surface, the introduction of amine functionality via a silanization step, the coupling of an adequate crosslinker and finally the immobilization of the DNA probe. The response of different thin-film materials and plastic substrates to the immobilization procedure is discussed. The DNA probes immobilized in the patterned pixels were then allowed to hybridize with complementary target DNA labeled with a fluorescent molecule. A prototype array of thin film pixels of SiO2 functionalized by silanization deposited over a polyimide substrate is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ramsay, G. (1998), Nature Biotechnol., 16, 4044.Google Scholar
2. Street, R.A.“Hydrogenated Amorphous Silicon”, Cambridge Univ. Press, Cambridge, 1991.Google Scholar
3. Kumar, A. and Liang, Z. (2001), Nucleic Acids Res., 29, e2.Google Scholar
4. Brennan, T. M. (1995) US Patent 5 474 796.Google Scholar
5. Edman, C.F. Raymond, D.E. Wu, D.J. Tu, E. Sosnowski, R.G. Butler, W.F. Nerenberg, M. and Heller, M.J. (1997), Nucleic Acids Res., 25, 49074914.Google Scholar
6. Bidan, G. Billon, M. Galasso, K. Livache, T. Mathis, G. Roget, A. Torres-Rodriguez, L.M. and Vieil, E. (2000), App. Biochem. Biotechnol., 89, 183193 Google Scholar
7. Shoffner, M.A. Cheng, J. Hvichia, G.E. Kricka, L.J. and Wilding, P. (1996), Nucleic Acids Res., 24, 375379.Google Scholar
8. Peterson, Q.W. Heaton, R.J. and Georgiadis, R.M. (2001), Nucleic Acids Res., 29, 51635168.Google Scholar
9. Okamoto, T. Suzuki, T. Yamamoto, N. (2000), Nature Biotechnol., 18: 438441.Google Scholar
10. Dang, T. A. and Gnanasekaran, R. (1990), Surf. Int. Analysis, 15: 113118.Google Scholar