Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:35:16.720Z Has data issue: false hasContentIssue false

Thin Film Infrared Laser Pyrolysis Studies of Thermal Decomposition Mechanisms in Nitramine Propellants

Published online by Cambridge University Press:  15 February 2011

Tod R. Botcher
Affiliation:
Department of Chemistry, University of Utah, Salt Lake City, UT 84112
Charles A. Wight
Affiliation:
Department of Chemistry, University of Utah, Salt Lake City, UT 84112
Get access

Abstract

Thin films of RDX (1,3,5-trinitro-1,3,5-triazine) have been prepared by vapor deposition onto a 77 K substrate window and pyrolyzed with a pulsed CO2 laser. Each sample is rapidly quenched after the laser pulse by heat conduction into the cold substrate, and the initial reaction products are trapped on the window for examination by transmission FTIR spectroscopy. We have detected N2O4, the dimer of nitrogen dioxide, as an initial condensed phase pyrolysis product, confirming that scission of one of the N-N bonds is the first step in the reaction mechanism. No evidence was found for formation of methylene nitramine via a proposed concerted depolymerization pathway.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Melius, C. F., in Chemistry andPhysics of Energetic Materials edited by Bulusu, S. N., (Kluwer: London, 1990).Google Scholar
2. Behrens, R. Jr., and Bulusu, S.; J. Phys. Chem. 95, 5838 (1991).CrossRefGoogle Scholar
3. Rodgers, S. L., Coolidge, M. B., Lauderdale, W. J., and Shackelford, S. A., Thermochimica Acta 177, 151 (1991).CrossRefGoogle Scholar
4. Brill, T. B., Brush, P. J., Kinloch, S. A., and Gray, P., Phil. Trans. Royal Soc., Ser. A, 339, 337 (1992).Google Scholar
5. Oxley, J. C., Hiskey, M., Naud, D., and Szekeres, R. J., J. Phys. Chem. 96, 2505 (1992).Google Scholar
6. Pace, M. D., J. Energ. Mater. 3, 279 (1985).Google Scholar
7. Zhao, X., Hintsa, E. J., and Lee, Y.T, J. Chem. Phys. 88, 801 (1988).Google Scholar
8. Sewell, T. D. and Thompson, D. L., J. Phys. Chem. 95, 6228 (1991).Google Scholar
9. Suryanarayana, B., Graybush, R. J., and Autera, J. R., Chem. Ind., 2177 (1967).Google Scholar
10. Suryanarayanan, K. and Bulusu, S., J. Phys. Chem. 76, 496 (1972).Google Scholar
11. Wight, C. A. and Botcher, T. R., J. Am. Chem. Soc. 114, 8303 (1992).Google Scholar
12. Federoff, B. T. and Sheffield, O. E., Encyclopedia of Explosives and Related Items, (Picatinny Arsenal, Dover, NJ, 1966), Rept. No. PATR-2700, Vol. III, CPIA Abstract No. 68–0238, AD 653 029, U-A.Google Scholar
13. Smith, G. R. and Guillory, W. A., J. Mol. Spectrosc. 68, 223 (1977).Google Scholar
14. Hisatsune, I.C., in Advances in Molecular Spectroscopy edited by Mangini, A., (Pergamon Press; New York, 1962).Google Scholar
15. Mowry, R. C., Page, M., Adams, G. F., and Lengsfeld, B. H. III, J. Chem. Phys. 93, 1857 (1990).Google Scholar