Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:10:50.030Z Has data issue: false hasContentIssue false

Thin Film Decohesion and Its Measurement

Published online by Cambridge University Press:  15 February 2011

A. Bagchi
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
A. G. Evans
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

The mechanics of thin films are used to define quantitative procedures for predicting interface decohesion motivated by residual stress. The emphasis is on the role of the interface debond energy, especially methods for its accurate and reliable measurement. Experimental results are reviewed and possible mechanisms are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Drory, M. D., Thouless, M. D., Evans, A. G., Acta Metall. Mater. 36, 20192028 (1988).Google Scholar
2. Thouless, M. D., J. Vac. Sci. Technol. A 9, 25012515 (1991).Google Scholar
3. Suo, Z., J. Vac. Sci. TechnoL A 11, 13671372 (1993).Google Scholar
4. Suo, Z., Hutchinson, J. W., Intl. J. Frac. 43, 118 (1990).Google Scholar
5. Hutchinson, J. W., Suo, Z., Adv. Appl. Mech. 29, 63191 (1992).Google Scholar
6. Bagchi, A., Lucas, G. E., Suo, Z., Evans, A. G., J. Mater. Res. 9, 17341741 (1994).Google Scholar
7. Bagchi, A., Evans, A. G., submitted to Thin Solid Films.Google Scholar
8. Suo, Z., Shih, C. F., Varias, A. G., Acta Metall. Mater. 41, 15511557 (1993).Google Scholar
9. Elssner, G., Korn, D., Ruihle, M., Scripta Metall. Mater. 31, 10371042 (1994).Google Scholar
10. Hsia, K. J., Suo, Z., Yang, W., J. Mech. Phys. Solids. 42, 877896 (1994).Google Scholar
11. Turner, M. R., Evans, A. G., Technical Report MECH-250, Division of Applied Sciences, Harvard University (1995).Google Scholar
12. Tvergaard, V., Hutchinson, J. W., J. Mech. Phys. Solids 41, 11191135 (1993).Google Scholar
13. Tvergaard, V., Hutchinson, J. W., Phil. Mag. A 70, 641–56 (1994).Google Scholar
14. Wu, T. W., J. Mater. Res. 6, 407426 (1991).Google Scholar
15. Venkatraman, S. K., Kohlstedt, D. L., Gerberich, W. W., J. Mater. Res. 7, 11261132 (1992).Google Scholar
16. Venkatraman, S. K., Kohlstedt, D. L., Gerberich, W. W., Thin Solid Films 223, 269275 (1993).Google Scholar
17. Chen, W. T., Flavin, T. F., IBMJ. Res. Develop. 16, 203213 (1972).Google Scholar
18. Kim, K.-S., Aravas, N., Intl. J. Solids Struct. 24, 417435 (1988).Google Scholar
19. Kim, K.-S., Kim, J., J. Engr. Mater. Tech. 110, 266273 (1988).Google Scholar
20. Goldfarb, J. F., Farris, R. J., Chai, Z., and Karasz, F. E. in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D. T., Mita, I., Yoons, D. Y. (Mater. Res. Soc. Proc. 227, Pittsburgh, PA, 1991) pp. 335340.Google Scholar
21. Jensen, H. M., Engr. Frac. Mech. 40, 475–86 (1991).Google Scholar
22. Jensen, H. M., Thouless, M. D., Intl. J. Solids Struct. 30, 779–95 (1993).Google Scholar
23. Leung, D. K., Zhang, N. T., McMeeking, R. M., Evans, A. G., submitted to J. Mater. Res..Google Scholar
24. Evans, A. G., Dalgleish, B. J., Acta Metall. Mater. 41, S295–S306 (1992).Google Scholar
25. Lipkin, D., Clarke, D. R., University of California, Santa Barbara (private communication),Google Scholar
26. Nix, W. D., Met. Trans. A 20, 22172245 (1989).Google Scholar
27. Bagchi, A., PhD thesis, University of California, Santa Barbara (1994).Google Scholar