Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:50:13.694Z Has data issue: false hasContentIssue false

Thickness Dependent Tetragonal Relaxation of Iron in Epitaxial Fe/Pd Multilayer Films

Published online by Cambridge University Press:  10 February 2011

T. Steffl
Affiliation:
Experimentelle Tieftemperaturphysik, Gerhard-Mercator-Universitdät, Duisburg, Germany
B. Rellinghaus
Affiliation:
Experimentelle Tieftemperaturphysik, Gerhard-Mercator-Universitdät, Duisburg, Germany
H. Mühlbauer
Affiliation:
Experimentelle Tieftemperaturphysik, Gerhard-Mercator-Universitdät, Duisburg, Germany
CH. Müller
Affiliation:
Experimentelle Tieftemperaturphysik, Gerhard-Mercator-Universitdät, Duisburg, Germany
H. Herper
Affiliation:
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität, Duisburg, Germany
G. Dumpich
Affiliation:
Experimentelle Tieftemperaturphysik, Gerhard-Mercator-Universitdät, Duisburg, Germany
Get access

Abstract

We have prepared (Fe(001)/Pd(001)) multilayers onto Pd-buffered sapphire substrates. Structural investigations utilizing HRTEM, RHEED and XRD show that the films grow epitaxially for up to 32 bilayers. Whereas the Fe lattice is found to assume the lateral (in-plane) lattice spacing of the underlying Pd layers, the out-of-plane lattice parameter along the [001] growth direction of the film is successively reduced with increasing Fe layer thickness. This outof-plane lattice relaxation even survives a subsequent growth of Pd onto the Fe. Thus, by varying the Fe layer thickness we have control of the atomic volume of Fe. Magnetization measurements reveal that the magnetic moment of Fe is as high as 2.7 µB per atom when the atomic volume is larger than Vat(Fe) ≥ 11.7 Å3 and is reduced to 2.2 µB per atom for Vat(Fe) ≤ 11.1 Å3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gradmann, U. and Isbert, H.O., J. Magn. Magn. Mat. 15–18 (1980) 1109; R.D. Ellerbrock, A. Fuest, A. Schatz, W. Keune and R.A. Brand, Phys. Rev. Lett. 74 (1995) 3053; J. Giergiel, J. Shen, J. Woltersdorf, A. Kirilyuk and J. Kirschner, Phys. Rev. B 52 (1995) 8528; R. Allenspach and A. Bischof, Phys. Rev. Lett. 69 (1992) 3385; S. Mitani, A. Kida and M. Matsui, J. Magn. Magn. Mat. 126 (1993) 76-78; D.J. Keavney, D.F. Storm, J.W. Freeland, I.L. Grigorov, and J.C. Walker, Phys. Rev. Lett. 74 (1995) 4531.Google Scholar
2 Moruzzi, V.L., Marcus, P.M., Schwarz, K. and Mohn, P., Phys. Rev. B 38 (1986) 1613; V.L. Moruzzi, P.M. Marcus and J. Kübler, Phys. Rev. B 39 (1989) 6957; H.C. Herper, E. Hoffmann and P. Entel, Phys. Rev. B 60 (1999) 3839.Google Scholar
3 Mühlbauer, H., Müller, Ch., and Dumpich, G., J. Magn. Magn. Mat. 192 (1999) 423; H. Mühlbauer, Strukturelle und magnetische Eigenschaften von (Fe/Pt)n, und (Fe/Pd)n-Viellagenschichten, Shaker, Aachen, 1998.Google Scholar
4 Müller, Ch., Mühlbauer, H., Steffl, T., Rellinghaus, B., and Dumpich, G., submitted to J. Cryst. Growth (2000).Google Scholar
5 Steffl, T., Mühlbauer, H., Rellinghaus, B., and Dumpich, G., accepted for publication in the Proc. Int. Symp. on Structure and Dynamics of Heterogeneous Systems (2000).Google Scholar
6 Schuller, I. K., Phys. Rev. Lett. 44 (1980) 1597; W. Sevenhans, M. Gijs, Y. Bruynseraede, H. Homma and I.K. Schuller, Phys. Rev. B 34, Rap.Comm. (1986) 5955; E.E. Fullerton, D. Stoeffler, K. Ounadjela, B. Heinrich, Z. Celinski and J.A.C. Bland, Phys. Rev. B 51 (1995) 6364.Google Scholar
7 Childress, J.R., Kergoat, R., Durand, O., George, J.-M., Galtier, P., Miltat, J., and Schuhl, A., J. Magn. Magn. Mat. 130 (1994) 13; M. Li, X.D. Ma, C.B. Peng, J.G. Zhao, Y.H. Liu, B.G. Shen, and D.S. Dai, J. Phys.: Cond. Mat. 6 (1994) L785.Google Scholar
8 Herper, H.C., Hoffmann, E., and Entel, P., Phys. Rev. B 60 (1999) 3839.Google Scholar