Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:47:41.106Z Has data issue: false hasContentIssue false

Thick-Film Processing of Pb5Ge3O11-Based Ferroelectric Glass-Ceramics

Published online by Cambridge University Press:  21 February 2011

Iván A. Cornejo
Affiliation:
Depto. de Física Exp. y Ciencia de Materiales, Comisión Chilena de Energía Nuclear, Amunátegui 95, Santiago, Chile.
Michael J. Haun
Affiliation:
Colorado Center for Advanced Ceramics, Colorado School of Mines, Golden, CO 80401, USA.
Get access

Abstract

Processing techniques were investigated to produce c-axis orientation, or texture, of ferroelectric Pb5Ge3O11-based glass-ceramic compositions during crystallization of amorphous thick-film printed samples from the Pb5Ge3O11-PbTiO3 (PG-PT) and Pb5Ge3O11Pb(Zr1/2Ti1/2)O3 (PG-PZT) systems. In these systems the PG crystallized into a ferroelectric phase, producing a multiple ferroelectric phase composite at low temperatures, PG-PT or PG-PZT. In this way the non-ferroelectric component of traditional ferroelectric glass-ceramics was eliminated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Speranskaya, E.I., [in Russian] Izvest. Akad. Nauk. SSSR, 162(1959).Google Scholar
2 Eysel, W., Wolfe, R.W., and Newnham, R.E., J. Am. Ceram. Soc. 56 (4), 185 (1973).Google Scholar
3 Rusinko, M., B.Sc. thesis, The Pennsylvania State University, 1975.Google Scholar
4 Park, S.M., Ph.D. thesis, University of Illinois at Urbana-Champaign, 1977.Google Scholar
5 Payne, D.A. and Park, S.M., US Patent No.4,158,219 (1979).Google Scholar
6 Schulze, W.A. and Biggers, J.V., Mat. Res. Bull. 14, 721 (1979).Google Scholar
7 Payne, D.A. and Park, S.M., US Patent No.4,218,723 (1980).Google Scholar
8 Payne, D.A., Park, S.M., and Jahnke, O.C., US Patent No.4,237,084 (1980).Google Scholar
9 Adachi, M., Nishibe, N., Shiosaki, T., and Kawabata, A., Jpn. J. Appl. Phys. 22 Suppl. 22–2, 77 (1983).Google Scholar
10 Jang, S.J., Schulze, W.A., and Biggers, J.V., Ceram. Bull. 62 (2), 216 (1983).Google Scholar
11 Park, H.D. and Brown, A.E., US Patent No. 4,550,088 (1985).Google Scholar
12 Lambachri, A., Manier, M., Mercurio, J.P., and Frit, B., Mat. Res. Bull. 23,571 (1988).Google Scholar
13 Collier, J., Cornejo, L.A., and Haun, M.J., Ferroelectrics 154,47 (1994).Google Scholar
14 Kim, Y.D., M.Sc. thesis, T-4515, Colorado School of Mines, Golden, CO, USA, (1994).Google Scholar
15 Collier, J., MSc. thesis, T-4479, Colorado School of Mines, Golden, CO, USA, (1994).Google Scholar
16 Jones, G.R., Shaw, N., and Vere, A.W., Electronics Lett. 8 (14), 345 (1972).Google Scholar
17 Newnham, R.E. and Cross, L.E., Endeavour, XXXH (115), 18 (1974).Google Scholar
18 Watton, R., Smith, C., and Jones, G.R., Ferroelectrics, 14, 719 (1976).Google Scholar
19 Cornejo, I.A., Ph.D. thesis, T-4631, Colorado School of Mines, Golden, CO, USA, (1994).Google Scholar
20 Cornejo, I.A., Collier, J., and Haun, M.J., Ferroelectrics 154,53 (1994).Google Scholar
21 Haun, M.J., Cornejo, I.A., Collier, J., Landin, S.M., Kim, Y., and Houng, B., in Sixth U.S.-Japan Seminar on Dielectric and Piezoelectric Ceramics. Nov. 11–12, Maui, Hawaii, (1993) pp. 251254.Google Scholar
22 Lotgering, F.K., J. Inorg. Nucl. Chem., 59, 113 (1959).Google Scholar
23 Iwasaki, H., Miyazawa, S., Koizumi, H., Sugii, K., and Niizeki, N., J. Appl. Phys. 43 (12), 4907 (1972).Google Scholar
24 Malinowski, M., Pietraszko, A., and Polomska, M., phys. stat. sol. (a), 41, K55 (1977).Google Scholar
25 Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics. 2nd Edition, John Wiley & Sons, (1976).Google Scholar