Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:30:46.808Z Has data issue: false hasContentIssue false

Thermosensitive Core-Shell Microgel as a “Nanoreactor” for Metal Nanoparticles

Published online by Cambridge University Press:  31 January 2011

Yan Lu
Affiliation:
[email protected], Helmholtz-Zentrum Berlin für Materialien und Energie, Soft Matter and Functional Materials, Berlin, Germany
Matthias Ballauff
Affiliation:
[email protected], Helmholtz-Zentrum Berlin für Materialien und Energie, Soft Matter and Functional Materials, Berlin, Germany
Get access

Abstract

In our study, thermosensitive core-shell microgel particles have been used as the carrier system for the deposition of metal nanoparticles, in which the core consists of polystyrene (PS) whereas the shell consists of poly(N-isopropylacrylamide) (PNIPA) network crosslinked by N, N'-methylenebisacrylamide (BIS). Silver, gold and palladium nanoparticles have been homogeneously embedded into thermosensitive PNIPA-networks, respectively. We demonstrate that the catalytic activity of the microgel-metal nanocomposites can be tuned by the volume transition within the microgel of these systems by using the catalytic reduction of 4-nitrophenol as the model reaction. Moreover, following the concept of a “green chemistry”, the oxidation of alcohols to the corresponding aldehydes or ketones can be carried out in aqueous solution under aerobic conditions at room temperature by using microgel-metal nanocomposites as the catalyst. The influence of temperature on the catalytic activity has been also investigated, which will be affected both by the volume transition of the microgel and by the change of polarity of the microgel in this case.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Burda, C., Chen, X., Narayanan, R., El-Sayed, M. A., Chem. Rev. 2005, 105, 1025.Google Scholar
[2] Astruc, D., ed. Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2008.Google Scholar
[3] Zhang, J., Xu, S., Kumacheva, E., Adv. Mater. 2005, 17, 2336.Google Scholar
[4] Scott, R. W. J., Wilson, O. M., Crooks, R. M., J. Phys. Chem. B 2005, 109, 692.Google Scholar
[5] Siiman, O., Burshteyn, A., J. Phys. Chem. B 2000, 104, 9795.Google Scholar
[6] Nayak, S., Lyon, L. A., Angew. Chem. Int. Ed. Engl. 2005, 44, 7686.Google Scholar
[7] Pelton, R., Adv. Colloid Interface Sci. 2000, 85, 1.Google Scholar
[8] Ballauff, M., Lu, Y., Polymer 2007, 48, 1815.Google Scholar
[9] Lu, Y., Mei, Y., Drechsler, M., Ballauff, M., Angew. Chem. 2006, 45, 813.Google Scholar
[10] Wittemann, A., Drechsler, M., Talmon, Y., Ballauff, M., J. Am. Chem. Soc. 2005, 127, 96889689.Google Scholar
[11] Mei, Y., Lu, Y., Polzer, F., Ballauff, M., Drechsler, M., Chem. Mater. 2007, 19, 10623.Google Scholar
[12] Lu, Y., Proch, S., Schrinner, M., Drechsler, M., Kempe, R., Ballauff, M., J. Mater. Chem. 2009, 19, 3955.Google Scholar
[13] Lu, Y., Drechsler, M., Langmuir 2009, 25, 1310013105.Google Scholar
[14] Lu, Y., Mei, Y., Drechsler, M., Ballauff, M., J. Phys. Chem. B 2006, 110, 3930.Google Scholar
[15] Mei, Y., Sharma, G., Lu, Y., Drechsler, M., Ballauff, M., Irrgang, T., Kempe, R., Langmuir 2005, 21, 12229.Google Scholar
[16] Biffis, A., Cunial, S., Spontoni, P., Prati, L., J. Catal. 2007, 251, 1.Google Scholar
[17] Schrinner, M., Proch, S., Mei, Y., Kempe, R., Miyajima, N., Ballauff, M., Adv. Mater. 2008, 20, 1928.Google Scholar