Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:03:32.619Z Has data issue: false hasContentIssue false

Thermomechanical Relaxation of Thin-Film Metallizations

Published online by Cambridge University Press:  22 February 2011

Hartmann Hieber*
Affiliation:
Philips GmbH Forschungs laboratorium Hamburg, Vogt-Kölln-Str. 30, 2000 Hamburg 54, FRG
Get access

Abstract

Pure Al and Cu films evaporated on thin glass and thermally oxidized silicon substrates are subject to changes in temperature Ṫ>100Ks-1. With constant temperature the stress relaxation is between 1 and 10 % of the thermally induced stress. The stationary creep rates are comparable to diffusion controlled power-law creep. The discontinuous grain growth during the T cycling shifts the transient amplitudes and the stationary slopes of stress to negative values. DC resistance measurements indicate the production and annihilation of vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ho, P.S., Tu, K.N., “Thin Films and Interfaces”, Mat. Res. Soc. Proc. Vol.10 (1982).Google Scholar
2 Hieber, H., Pape, K., in “Reliab. Electr. Comp. Syst”, North-Holl. Publ. Comp. (1982), 213.Google Scholar
3 Gangulee, A., Acta Metallurg. 22 (1974), 177.Google Scholar
4 Murakami, M., Acta Metallurg. 26 (1978), 175.Google Scholar
5 Murakami, M., CRC Crit. Rev. Sol. State Mater. Sci. 11 (1984) 317. 202CrossRefGoogle Scholar
6 Segmüller, A., Murakami, M., Sol. State Phys. (1983).Google Scholar
7 Chaudhari, P., Philos, Mag. A39 (1979), 507.Google Scholar
8 Gupta, D., Thin Sol. Films 25 (1975), 231.Google Scholar
9 Ortler, R., Hieber, H., Study work (1981).Google Scholar
10 Witt, F., Vook, R.W., J. Appl. Phys. 39 (1968), 2773.Google Scholar
11 Murakami, M., Yogi, T., Sol. State Phys. (1984).Google Scholar
12 Laugier, M., Thin Sol. Films 66 (1980), L7.Google Scholar
13 Kubát, J., Rigdahl, M., Seldén, R., phys. stat. sol. (a) 50 (1978), 117.Google Scholar
14 Threadgill, P.L., Mordike, B.L., Z.Metallkde. 68 (9177), 266.Google Scholar
15 Vale, S.H., Acta Metallurg. 32 (1984), 693.Google Scholar
16 Schneibel, J.H., Hazzledine, P.M., Acta Metallurg. 30 (1982), 1223.Google Scholar
17 Ray, R., Ashby, M.F., Trans. Amer. Inst. Min. Engrs. 2 (1971), 1113.Google Scholar
18 Wu, Mu Yeh, Sherby, O.D., Acta Metallurg. 32 (1984), 1561.Google Scholar
19 Späth, H., “Algorithmen für elementare Ausgleichsmodelle”, Oldenbourg-Verl. (München, 1973).Google Scholar
20 Speight, M.V., Beeré, W., Metal Sci. 9 (1975), 190.Google Scholar
21 Arzt, E., Ashby, M.F., Verrall, R.A., Acta Metallurg. 31 (1983), 1977.Google Scholar
22 Hazzledine, P.M., Newbury, D.E., “Grain Boundary Structure and Properties (ed. Chadwick, G.A., Smith, D.A.), Acad. Press, London (1976).Google Scholar
23 J¨rgensen, S., Pape, K., Hieber, H., Deutsche Ges. Metallkde Berichte (1984), in print.Google Scholar
24 Gleiter, H., Acta Metallurg. 27 (1979), 187.Google Scholar
25 Bocquet, J.L., Brébec, G., Limoge, Y., “Diffusion in Metals and Alloys” in “Physical Metallurgy” (ed. Haasen, P., Cahn, R.W.), North- Holland (1983), 385.Google Scholar
26 Szabo, I., “Einf. Techn. Mechanik”, Springer-Verl. (Bln, Gött, Hdbg. 1954).Google Scholar