Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:58:28.251Z Has data issue: false hasContentIssue false

Thermo-Mechanical and ILSS Properties of Woven Carbon/Epoxy-XD-CNT Nanophased Composites

Published online by Cambridge University Press:  04 June 2014

Mohammad K. Hossain*
Affiliation:
Department of Mechanical Engineering and Tuskegee University, Tuskegee, AL 36088
Md Mahmudur R. Chowdhury
Affiliation:
Department of Mechanical Engineering and Tuskegee University, Tuskegee, AL 36088
Mahmud B. Salam
Affiliation:
Department of Mechanical Engineering and Tuskegee University, Tuskegee, AL 36088
Johnathan Malone
Affiliation:
Department of Mechanical Engineering and Tuskegee University, Tuskegee, AL 36088
Mahesh V. Hosur
Affiliation:
Department of Materials Science and Engineering, Tuskegee University, Tuskegee, AL 36088
Shaik Jeelani
Affiliation:
Department of Materials Science and Engineering, Tuskegee University, Tuskegee, AL 36088
Nydeia W. Bolden
Affiliation:
Air Force Research Laboratory Munitions Directorate, Eglin AFB, FL 32542.
*
*Corresponding Author: Assistant Professor, [email protected].
Get access

Abstract

Carbon fiber-reinforced epoxy composites (CFEC) were fabricated infusing 0, 0.15, 0.30, and 0.40 wt% amino-functionalized XD-grade carbon nanotubes (NH2-XDCNTs) using the compression molding process under 16 kips. The thermo-mechanical and interlaminar shear properties of CNT incorporated carbon/epoxy composite samples were evaluated by performing dynamic-mechanical thermal analysis (DMTA) and short beam shear (SBS) tests. XD-CNTs were infused into Epon 862 resin using a mechanical stirrer followed by a high intensity ultrasonic liquid processor for better dispersion. After the sonication, the mixture was placed in a three roll milling processor for 3 successive cycles at 140 rpm, with the gap spaces incrementally reduced from 20 to 5 μm, to obtain the uniform dispersion of CNTs throughout the resin. Epikure W curing agent was then added to the modified resin and mixed using a high-speed mechanical stirrer. Finally, the fiber was reinforced with that modified resin using the compression molding process. The results obtained from the DMTA test were analyzed based on the storage modulus, glass transition temperature, and loss modulus. The analysis indicated that the thermo-mechanical properties were linearly increasing from 0 to 0.3 wt% XDCNT loading. The SBS test results exhibited that the incorporation of XDCNTs into the composite increased the interlaminar shear strength (ILSS) by up to 22% at 0.3 wt% CNT loading. Better dispersion of XDCNTs might be attributed to more crosslinking sites and better interaction between fiber and matrix resulting in an improved fiber-matrix interface, whereas, the reaction between functional groups –NH2 of XDCNTs with epoxide groups of resin and epoxy silanes of fiber surfaces improved the crosslinking and thereby ILSS properties of carbon/epoxy composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Farhana, P., Zhou, Y., Rangari, V. and Jeelani, S., Mater. Sci. Eng.: Part A 405, 246 (2005).Google Scholar
Mahfuz, H., Adnan, A., Rangari, V., Jeelani, S. and Jang, B.Z., Compos. Part A 35, 519 (2004).CrossRefGoogle Scholar
Zhou, Y., Farhana, P., Lewis, L. and Jeelani, S., Mater Sci. Eng: A 452, 657 (2007).CrossRefGoogle Scholar
Tao, K., Yang, S., Grunlan, J. C., Kim, Y. S., Dang, , Deng, B. Y., Thomas, R. L., Wilson, B. L., and Wei, X., J. Appl. Polym. Sci. 102, 5248 (2006).CrossRefGoogle Scholar
Okoro, C.U., Hossain, M.K., Hosur, M.V., Jeelani, S., J. Eng. Mater. Technol. 133, 131 (2011)10.1115/1.4004692CrossRefGoogle Scholar
Yaping, Z., Aibo, Z., Jiaoxia, Z., and Rongchang, N., Mater. Sci. Eng. A 145, 435 (2006).Google Scholar
Xie, X., Mai, Y. W., and Zhou, X., Mater. Sci. Eng. A 49, 89 (2005).CrossRefGoogle Scholar
Sahoo, N.G., Rana, S., Cho, J. W., Li, L., Prog. Polym. Sci. 35, 837 (2010,).10.1016/j.progpolymsci.2010.03.002CrossRefGoogle Scholar
Vlasveld, D. P. N., Daud, W., Bersee, H. E. N., and Picken, S., Compos. Part A 38,730 (2007).CrossRefGoogle Scholar
Rahman, M. M., Zainuddin, S., Hosur, M. V., Malone, J. E., Salam, M. B. A., Kumar, A. S. and Jeelani, S., Compos. Struct. 94, 2397 (2012).CrossRefGoogle Scholar
Rosselli, F. and Santare, M. H., Composites, Part A 28(6), 587 (1997).CrossRefGoogle Scholar
Yokozeki, T., Iwahori, Y. and Ishiwata, S., Composites, Part A 38, 917 (2006).CrossRefGoogle Scholar
Siddiqui, N. A., Woo, R. S. C., Kim, J. K. and Munir, A., Composites, Part A 38, 449 (2006).10.1016/j.compositesa.2006.03.001CrossRefGoogle Scholar
Zhu, J., Imam, A., Crane, R., Lozano, K., Barrera, E.V., Compos. Sci. Technol. 67, 1509 (2006).CrossRefGoogle Scholar
Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W. and Schulte, K., Composites, Part A 36, 1525 (2005).CrossRefGoogle Scholar
Wichmann, M. H. G., Sumfleth, J., Gojny, F. H., Quaresimin, M., Fiedler, B. and Schulte, K., Eng. Fract. Mech. 73, 2346 (2006).CrossRefGoogle Scholar
Beyakrova, E., Thostenson, E. T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H. T., Chou, T. W., Itkis, M. E. and Haddon, R. C., Langmuir, 23, 3970 (2007).10.1021/la062743pCrossRefGoogle Scholar
Subramaniyan, A.K. and Sun, C. T., Composites, Part A 37, 2257 (2006).CrossRefGoogle Scholar
Ma, P. C., Mo, S. Y., Tang, B. Z. and Kim, J. K., Carbon 48, 1824 (2010).CrossRefGoogle Scholar
Zhang, A. Y., Li, D. H., Lu, H. B., Xiao, H. Y. and Jia, J., Express Polym. Lett. 5, 708 (2010).CrossRefGoogle Scholar
Shokrieh, M. M., Daneshvar, A. and Akbari, S., Carbon, 59, 255(2013).CrossRefGoogle Scholar
Pramoda, K. P., Linh, N. T. T., Tang, P. S., Tjiu, W. C., Goh, S. H., He, C. B., Compos. Sci. Technol. 70, 578 (2010).10.1016/j.compscitech.2009.12.006CrossRefGoogle Scholar
Lusti, H. R. and Gusev, A. A, Model. Simul. Mater. Sci. Eng. 12, 107 (2004).10.1088/0965-0393/12/3/S05CrossRefGoogle Scholar
Ganguly, S., Roy, A. K. and Andersion, D. P., Carbon 46,806 (2008).CrossRefGoogle Scholar