Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:13:38.476Z Has data issue: false hasContentIssue false

Thermoelectric Properties of PbTe/Pb1−x. Eux Te Quantum Wells

Published online by Cambridge University Press:  10 February 2011

H. Scherrer
Affiliation:
Laboratoire de Physique du Solide, F-54042 Ecole des Mines, Nancy, France
Z. Dashevsky
Affiliation:
Ben-Gurion University of Negev, Beer-Sheva, Israel
V. Kantser
Affiliation:
Institute of Applied Physics, Academy of Science of Moldova
A. Casian
Affiliation:
Technical University of Moldova, MD-2004, Kishinau, Moldova
I. Sur
Affiliation:
Technical University of Moldova, MD-2004, Kishinau, Moldova
A. Sandu
Affiliation:
Technical University of Moldova, MD-2004, Kishinau, Moldova
Get access

Abstract

The electrical conductivity, Seebeck coefficient, and thermoelectric power factor of PbTe/Pb1−xEuxTe quantum well structures are investigated theoretically. The variational method is employed. The anisotropy of effective masses, the multivalley character of the bulk semiconductors and also the dependence of effective masses in dimensional quantization subbands on the well width are taken into account. The carrier scattering both on optical and acoustical phonons is considered for structures with (111) and (100) crystallographic orientation. It is found that the power factor is larger in (100) oriented quantum wells. The results of recent experiments are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
2. Hicks, L. D., Harman, T. C. and Dresselhaus, M. S., Appl.Phys. Lett. 65, 3230, (1993).CrossRefGoogle Scholar
3. Sofo, J.O. and Mahan, G. D., Appl. Phys. Lett. 65, 2690 (1994).CrossRefGoogle Scholar
4. Broido, D. A. and Reinecke, T. L., Phys. Rev. B 51, 13797 (1995).CrossRefGoogle Scholar
5. Lin–Chung, P. J. and Reinecke, T.L., Phys. Rev. B 51, 13244 (1995).CrossRefGoogle Scholar
6. Broido, D.A. and Reinecke, T. L., Appl. Phys. Lett. 67, 1170 (1995).CrossRefGoogle Scholar
7. Casian, A., Dashevsky, Z., Scherrer, H., Sur, I. and Sandu, A., J. of Thermoel., N3, 29 (1998).Google Scholar
8. Casian, A., Dashevsky, Z., Kantser, V., Scherrer, H., Sur, I. and Sandu, A., Proc. of XVII Intern. Conf. on Thermoelectr., Nagoya, 1998 (in press).Google Scholar
9. Yuan, Shu, Springholz, G., Bauer, G. and Kriechbaum, M., Phys.Rev. B 49, 5476 (1994).CrossRefGoogle Scholar
10. Ziman, J.. Electrons and Phonons, Clarendon Press, Oxford, 1960, Chap.10, p. 5.Google Scholar
11. Ravich, Yu. I., Efimova, B. A. and Smirnov, I. A., Methods of investigation of semiconductors applied to lead chalcogenides PbTe, PbSe, PbS, Nauca Press, Moscow 1968, Annex B.Google Scholar
12. Harman, T. C., Spears, D. L., Manfra, M. J., J. of Electr. Mater., Vol.25, No 7, 1121 (1996).CrossRefGoogle Scholar