Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:58:02.024Z Has data issue: false hasContentIssue false

Thermoelectric properties of epitaxial and topotaxial NaxCoO2 thin films

Published online by Cambridge University Press:  01 February 2011

Adyam Venimadhav
Affiliation:
[email protected], Pennsylvania State University, Physics, 104 Davey Lab, University Park, State College, Pennsylvania, 16802, United States, 814-863-0528, 814-865-3604
Z Ma
Affiliation:
[email protected], PSU, Physics, United States
Qi Li
Affiliation:
[email protected], PSU, Physics, United States
A Soukiassian
Affiliation:
[email protected], PSU, Materials Science and Engineering, United States
X. X. Xi
Affiliation:
[email protected], PSU, Materials Science and Engineering, United States
D. G. Schlom
Affiliation:
[email protected], PSU, Materials Science and Engineering, United States
R. Arroyave
Affiliation:
[email protected], PSU, Materials Science and Engineering, United States
Z. K. Liu
Affiliation:
[email protected], PSU, Materials Science and Engineering, United States
Minhyea Lee
Affiliation:
[email protected], Princeton University, Physics, United States
N. P. Ong
Affiliation:
[email protected], Princeton University, Physics, United States
Get access

Abstract

We report structural, electrical, and thermopower properties of epitaxial and topotaxial NaxCoO2 thin films on (0001) sapphire substrate. Topotaxial NaxCoO2 films were prepared by converting an epitaxial Co3O4 film to NaxCoO2 by annealing in Na vapor and epitaxial NaxCoO2 films were obtained by pulsed laser deposition. All the films are c-axis oriented. For topotaxial films, annealing in different Na vapor pressures resulted in films with different Na concentrations, which showed distinct transport properties. For directly deposited epitaxial films by pulsed laser deposition, deposition parameters are found to control the Na concentration and hence the film properties. The largest thermoelectric power of the samples made by different methods is found to be similar in the range of 70-100 μV/K at room temperature

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terasaki, I., Sasago, Y., and Uchinokura, K., Phys. Rev. B 56, R12 685 (1997).Google Scholar
2. Zhang, P. H., Luo, W. D., Cohen, M. L., Louie, S. G., Phys. Rev. Lett. 93, 236402 (2004).Google Scholar
3. Foo, M. L., Wang, Y., Watauchi, S., Zandbergen, H. W., He, T., Cava, R. J., and Ong, N. P., Phys. Rev. Lett. 92, 247001 (2004).Google Scholar
4. Takada, K., Sakurai, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R. A., Sasaki, T., Nature (London) 422, 53 (2003).Google Scholar
5. Schaak, R. E., Klimczuk, T., Foo, M. L., Cava, R. J., Nature (London) 424, 527 (2003).Google Scholar
6. Lee, K. W., Kunes, J., Novak, P., Pickett, W. E., Phys. Rev. Lett. 94, 026403 (2005).Google Scholar
7. Mukhamedshin, I. R., Alloul, H., Collin, G., Blanchard, N., Phys. Rev. Lett. 93, 167601 (2004).Google Scholar
8. Sugiyama, J., Brewer, J. H., Ansaldo, E. J., Itahara, H., Tani, T., Mikami, M., Mori, Y., Sasaki, T., Hebert, S., Maignan, A., Phys. Rev. Lett. 92, 017602 (2004).Google Scholar
9. Wang, Y. Y., Rogado, N. S., Cava, R. J., and Ong, N. P., Nature (London) 423, 425 (2003).Google Scholar
10. Ohta, H., Kim, S.-W., Ohta, S., Koumoto, K., Hirano, M., and Hosono, H., Crystal Growth & Design 5, 25 (2005).Google Scholar
11. Venimadhav, A., Soukiassian, A.,, Xi, X. X., Schlom, D. G., Lee, Minhyea, Ong, N. P., Li, Q. Appl. Phys. Lett. 87, 172104 (2005)Google Scholar
12. Son, J. Y. and Kim, Bog G. and Cho, J. H. Appl. Phys. Lett. 86, 221918 (2005)Google Scholar
13. Krockenberger, Y., Fritsch, I., Cristiani, G., Matveev, A., Alff, L., Habermeier, H.-U., and Keimer, B., Appl. Phys. Lett. 86, 191913 (2005)Google Scholar
14. Si, W. D., Park, S. M., and Johnson, P., 2004 MRS Fall Meeting Technical Program, (MRS, Pittsburgh, 2004) p204.Google Scholar
15. Krockenberger, Y., Fritsch, I., Cristiani, G., Matveev, A., Alff, L., Habermeier, H.-U., and Keimer, B., Appl. Phys. Lett. 86, 191913 (2005).Google Scholar
16. Sales, B. C., Jin, R., Affholter, K. A., Khalifah, P., Veith, G. M., Mandrus, D., Phys. Rev. B 70, 174419 (2004).Google Scholar
17. Rivadulla, F., Zhou, J.-S., and Goodenough, J. B. Phys. Rev. B 68, 075108 (2003)Google Scholar