Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T09:43:02.005Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Doped Iron Disilicide

Published online by Cambridge University Press:  01 February 2011

Jun-ichi Tani
Affiliation:
Department of Inorganic Chemistry, Osaka Municipal Technical Research Institute, 1–6–50 Morinomiya, Joto-ku, Osaka 536–8553, Japan, [email protected]
Hiroyasu Kido
Affiliation:
Department of Inorganic Chemistry, Osaka Municipal Technical Research Institute, 1–6–50 Morinomiya, Joto-ku, Osaka 536–8553, Japan, [email protected]
Get access

Abstract

In order to investigate the thermoelectric properties of Re-doped β-FeSi2 (Fe1-xRexSi2), Ir-doped β-FeSi2 (Fe1-xIrxSi2), and Pt-doped β-FeSi2 (Fe1-xPtxSi2), the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of these samples have been measured in the temperature range between 300 and 1150 K. Fe1-xRexSi2 is p-type, while Fe1-xIrxSi2 and Fe1-xPt xSi2 are n-type over the measured temperature range. The solubility limits of dopant are estimated to be 0.2at% for Fe1-xRexSi2, 0.5at% for Fe1-xIrxSi2, and 1.9at% for Fe1-xPtxSi2. A maximum ZT value of 0.14 was obtained for Fe1-xPt xSi2 (x=0.03) at the temperature 847 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abrikosov, N. Kh., Bull. Acad. Sci. U.S.S.R. 20, 37 (1956).Google Scholar
2. Ware, R. M. and McNeill, D. J., Proc. IEE 111, 178 (1964).Google Scholar
3. Birkholz, U. and Scelm, J., Phys. Status Solidi 27, 413 (1968).Google Scholar
4. Nishida, I., Phys. Rev. B 7, 2710 (1973).Google Scholar
5. Kojima, T., Phys. Status Solidi A 111, 233 (1989).Google Scholar
6. Tani, J. and Kido, H., J. Appl. Phys. 84, 1408 (1998).Google Scholar
7. Tani, J. and Kido, H., J. Appl. Phys. 86, 464 (1999).Google Scholar
8. Tani, J. and Kido, H., Jpn. J. Appl. Phys. 38, 2717 (1999).Google Scholar
9. Komabayashi, M., Hijikata, K., and Ido, S., Jpn. J. Appl. Phys. 30, 331 (1991).Google Scholar
10. van der Pauw, L. J., Philips Res. Rep. 13, 1 (1958).Google Scholar
11. Stöhrer, U., Proc. 11th Int. Conf. on Thermoelectrics, 191 (1992).Google Scholar
12. Hesse, J. and Bucksch, R., J. Mater. Sci. 5, 272 (1970).Google Scholar