No CrossRef data available.
Article contents
Thermoelectric properties of doped and undoped mixed phase hydrogenated amorphous/nanocrystalline silicon thin films
Published online by Cambridge University Press: 01 February 2011
Abstract
The Seebeck coefficient and dark conductivity for undoped, and n-type doped thin film hydrogenated amorphous silicon (a-Si:H), and mixed-phase films with silicon nanocrystalline inclusions (a/nc-Si:H) are reported. For both undoped a-Si:H and undoped a/nc-Si:H films, the dark conductivity is enhanced by the addition of silicon nanocrystals. The thermopower of the undoped a/nc-Si:H has a lower Seebeck coefficient, and similar temperature dependence, to that observed for undoped a-Si:H. In contrast, the addition of nanoparticles in doped a/nc-Si:H thin films leads to a negative Seebeck coefficient (consistent with n-type doping) with a positive temperature dependence, that is, the Seebeck coefficient becomes larger at higher temperatures. The temperature dependence of the thermopower of the doped a/nc-Si:H is similar to that observed in unhydrogenated a-Si grown by sputtering or following high-temperature annealing of a-Si:H, suggesting that charge transport may occur via hopping in these materials.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010