No CrossRef data available.
Article contents
Thermoelectric Power of Graphite Acceptor Compounds
Published online by Cambridge University Press: 15 February 2011
Abstract
Temperature variations of the thermopower (TEP) of acceptor graphite intercalation compounds (GIC) are very different from that of pristine graphite. At low temperatures the TEP increases monotonically with T, then levels off above 150 K. This behavior is ascribed to the phonon drag effect. In the region where the TEP is nearly constant, phonon relaxation is mainly controlled by the Rayleigh scattering due to point defects or impurities. This process leads to T-independent phonon drag TEP. The importance of Rayleigh scattering is due to the large cross section diameter of the Fermi surface in GIC. At low temperatures where the boundary scattering becomes important, the TEP is proportional to T3 . Detailed calculations are carried out by solving the phonon-carrier coupled Boltzmann equation.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1983