Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T03:05:00.376Z Has data issue: false hasContentIssue false

Thermoelectric Power in Ruthenates : Dominant Role of the Spin Degeneracy Term

Published online by Cambridge University Press:  26 February 2011

Yannick Klein
Affiliation:
[email protected], Laboratoire Crismat, Caen, 14050, France
Sylvie Hébert
Affiliation:
[email protected], Laboratoire Crismat, 6 Bd du Maréchal Juin, Caen, 14050, France
Antoine Maignan
Affiliation:
[email protected], Laboratoire Crismat, CNRS and ENSICAEN, 6 Bd du Maréchal Juin, Caen, 14050, France
Vincent Hardy
Affiliation:
[email protected], Laboratoire Crismat, Caen, 14050, France
Bernard Raveau
Affiliation:
[email protected], Laboratoire Crismat, Caen, 14050, France
Bogdan Dabrowski
Affiliation:
[email protected], Northern Illinois University, DeKalb, IL, 60115, United States
Petr Tomes
Affiliation:
[email protected], Institute of Physics of ASCR, Praha, 182 21, Czech Republic
Jiri Hejtmanek
Affiliation:
[email protected], Institute of Physics of ASCR, Praha, 182 21, Czech Republic
Get access

Abstract

The Seebeck coefficients of several ruthenates which structures derive from the perovskite, have been measured up to 800K. All the values above 300K are found to be in the range +25μV.K-1 to +35 μV.K-1, with a very weak dependence on both T absolute value and electrical resistivity. This demonstrates that S at high T depends mainly on the spin degeneracy term of the modified Heikes formula. The insensitivity of thermopower to the chemical doping confirms the applicability of the model. The present study also shows the good properties of ruthenates as thermoelectric p-type oxides for high T energy conversion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Terasaki, I., Sasago, Y., Uchinokura, K., Phys. Rev. B 56, R12685 (1997).Google Scholar
2 Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., Hejtmanek, J., Phys. Rev. B. 62, 166 (2000).Google Scholar
3 Matsubara, I., Funahashi, R., Takeuchi, T., Sodeoka, S., Shimizu, T., Ueno, K., Appl. Phys. Letters 78, 3627 (2001).Google Scholar
4 Funahashi, R., Urata, S., Mizuno, K., Kouuchi, T., Mikami, M., Appl. Phys. Lett. 85, 1036 (2004).Google Scholar
5 Funahashi, R., Mikami, M., Mihara, T., Urata, S., Ando, N., J. Appl. Phys. 99, 066117 (2006).Google Scholar
6 Chaikin, P. M., Beni, G., Phys. Rev. B 13, 647 (1976).Google Scholar
7 Doumerc, J. P., J. Solid Stat. Chem. 110, 419 (1994).Google Scholar
8 Koshibae, W., Tsutsui, K., Maekawa, S.,Phys. Rev. B 62, 6869 (2000).Google Scholar
9 Kobayashi, W., Terasaki, I., Mikami, M., Funahashi, R., Nomura, T., Katsufuji, T., J. Appl. Phys. 95, 6825 (2004).Google Scholar
10 Klein, Y., Hébert, S., Maignan, A., Kolesnik, S., Maxwell, T. and Dabrowski, B., Phys. Rev. B 73, 052412 (2006).Google Scholar
11 Hardy, V., Raveau, B., Retoux, R., Barrier, N. and Maignan, A., Phys. Rev. B 73, 094418 (2006).Google Scholar
12 Kobayashi, H., Nagata, M., Kanno, R. and Kawamato, Y., Mater. Res. Bull. 29, 1271 (1994).Google Scholar
13 Cao, G., Lee, J. S., Noh, T. W., Lee, S. R. and Char, K., Phys. Rev. B 71, 035104 (2005).Google Scholar
14 Ishida, Y., Ohta, H., Fujimori, A., Hosono, H., cond-mat/0511149 (2005).Google Scholar
15 Maignan, A., Hébert, S., Pelloquin, D., Michel, C. and Hejtmanek, J., J. Appl. Phys. 92, 1964 (2002).Google Scholar
16 Maignan, A., Martin, C., Damay, F., Raveau, B., Hejtmanek, J., Phys. Rev. B 58, 2758 (1998).Google Scholar