Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:40:22.830Z Has data issue: false hasContentIssue false

Thermoelectric Generators Made with Novel Lead Telluride Based Materials

Published online by Cambridge University Press:  31 January 2011

Chun-I Wu
Affiliation:
[email protected], Michigan State University, Electrical and Computer Engineering, East Lansing, Michigan, United States
Steven N Girard
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, Illinois, United States
Joseph Sootsman
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, Illinois, United States
Edward Timm
Affiliation:
[email protected], Michigan State University, Mechanical Engineering, East Lansing, Michigan, United States
Jennifer Ni
Affiliation:
Michigan State University, Chemical Engineering and Materials Science, East Lansing, Michigan, United States
Robert Schmidt
Affiliation:
[email protected], Michigan State University, Chemical Engineering and Materials Science, East Lansing, Michigan, United States
Mercouri Kanatzidis
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, Illinois, United States
Harold Schock
Affiliation:
[email protected], Michigan State University, Mechanical Engineering, East Lansing, Michigan, United States
Eldon D. Case
Affiliation:
[email protected], Michigan State University, Chemical Engineering and Materials Science, East Lansing, Michigan, United States
Duck Young Chung
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States
Timothy Hogan
Affiliation:
[email protected], Michigan State University, Chemical Engineering and Materials Science, East Lansing, Michigan, United States
Get access

Abstract

For the material (Pb0.95Sn0.05Te)1-x(PbS)x nanostructuring from nucleation and growth and spinodal decomposition were reported to enhance the thermoelectric figure of merit over bulk PbTe, producing ZT of 1.1 - 1.4 at 650 K for x = 0.08[1]. Thermoelectric modules made from (Pb0.95Sn0.05Te)1-x(PbS)x materials with various hot-side metal electrodes were fabricated and tested. Short circuit current was measured on unicouples of Pb0.95Sn0.05Te – PbS 8% (n-type) legs and Ag0.9Pb9Sn9Sb0.6Te20 (p-type) legs over 10 (A) for a hot side temperature of 870K, and a cold side of 300K. Hot pressed (Pb0.95Sn0.05Te)1-x(PbS)x materials were also investigated for module fabrication. Investigations of the electrical properties of hot-pressed (Pb0.95Sn0.05Te)1-x(PbS)x materials are presented along with the latest advancements in the fabrication and characteristics of modules based on the processing of these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Androulakis, J. Lin, C.-H. Kong, H.-J. Uher, C. Wu, C.-I, Hogan, T. Cook, B. A. Caillat, T. Journal of the American Chemical Society, 129, 9780 (2007).Google Scholar
2 Harman, T. C. Walsh, M. P. LaForge, B. E. Turner, G. W. Journal of Electronic Materials, 34(5), L19 (2005).Google Scholar
3 Hicks, L. D. Dresselhaus, M. S. Physical Review B, 47 (19), 12727 (1993).Google Scholar
4 Venkatasubramanian, R. Siivola, E. Colpitts, T. O'Quinn, B., Nature, 413, 597 (2001).Google Scholar
5 Broido, D. A. Reinecke, T. L. Physical Review B, 64, 045324 (2001).Google Scholar
6 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. Kanatzidis, M. G. Science, 303, 818 (2004).Google Scholar
7 Androulakis, J. Hsu, K. F. Pcionek, R. Kong, H. Uher, C. D'Angelo, J. J., Downey, A. Hogan, T., Kanatzidis, M. G. Advanced Materials, 18, 1170 (2006).Google Scholar
8 D'Angelo, J., Downey, A. Hogan, T. P. Review of Scientific Instruments, vol. 81, article: 075107, (2010).Google Scholar
9 Lowhorn, N. D. Wong-Ng, W., Zhang, W. Lu, Z. Q. Otani, M. Thomas, E. Green, M. Tran, T. N., Dilley, N. Ghamaty, S. Elsner, N. Hogan, T. Downey, A. D. Jie, Q. Li, Q. Obara, H. Sharp, J., Caylor, C. Venkatasubramanian, R. Willigan, R. Yang, J. Martin, J. Nolas, G. Edwards, B., Tritt, T. Applied Physics A, vol. 94, pp. 231234, (2009).Google Scholar
10 Migliori, A. and Sarrao, J. L. Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation, (Academic Press, New York, 1997).Google Scholar
11 Ni, J. E., Ren, F. Case, E. D. Timm, E. J. Materials Chemistry and Physics, 118, 459 (2009).Google Scholar
12 Ren, F. Case, E. D. Sootsman, J. R. and Kanatzidis, M. G. Kong, H. Lara-Curzio, C. Uher E. and Trejo, R. M. Uher, C. Acta Materialia, 56, 5954 (2008).Google Scholar
13 Ren, F. Hall, B. D. Ni, J. E. Case, E. D. Timm, E.J. Schock, H. J. Wu, C.-I, D'Angelo, J. J., Hogan, T. P. Trejo, R. M. Lara-Curzio, E., Materials Research Society Proceedings, 1044, 121 (2008).Google Scholar
14 Anstis, G. R. Chantikul, P. Lawn, B. R. Marshall, D. B. Journal of the American Ceramic Society, 64, 533 (1981).Google Scholar
15 Ren, F. Case, E. D. Timm, E. J. Jacobs, M. D. Schock, H. J. Philosophical Magazine Letters, 86, 673 (2006).Google Scholar
16 Seeto, W. R. Weide, R. K. Charland, T. L. Patent, U.S. No. 3,808,670 (7 May 1974).Google Scholar