Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:23:22.862Z Has data issue: false hasContentIssue false

Thermoelectric and Thermomagnetic Effects in High-Temperature Superconductors

Published online by Cambridge University Press:  26 February 2011

R. P. Huebener
Affiliation:
Physikalisches Institut, Experimentalphysik II, Universität Tübingen, W - 7400 Tübingen, Germany
H. -C. Ri
Affiliation:
Physikalisches Institut, Experimentalphysik II, Universität Tübingen, W - 7400 Tübingen, Germany
R. Gross
Affiliation:
Physikalisches Institut, Experimentalphysik II, Universität Tübingen, W - 7400 Tübingen, Germany
F. Kober
Affiliation:
Physikalisches Institut, Experimentalphysik II, Universität Tübingen, W - 7400 Tübingen, Germany
Get access

Abstract

In the mixed state of high-temperature superconductors the dominant part of the Seebeck and Nernst effect is due to the thermal diffusion of quasiparticles and vortices, respectively. Our understanding of the Seebeck effect is based on the two-fluid counterflow model of Ginzburg and its extension to the mixed state with the presence of vortices. From the Nernst effect the transport entropy of the vortices is obtained. We summarize the recent thermoelectric and thermomagnetic experiments, paying also attention to the role of the Magnus force (Hall effect) and to the thermal fluctuation effects near TC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Müller, K. A., Z. Phys. B 64, 189 (1986)Google Scholar
2. de Groot, S. R., Thermodynamics of Irreversible Processes, North Holland, AmsterdamGoogle Scholar
3. Callen, H. B., Thermodynamics, John Wiley, New York, 1960 Google Scholar
4. Huebener, R. P., Physica C 168, 605 (1990)Google Scholar
5. Huebener, R. P., Kober, F., Gross, R., and Ri, H.-C., Physica C 185–189, 349 (1991)Google Scholar
6. Ginzburg, V. L., Zh. Eksp. Teor. Fiz. 14, 177 (1944) [J. Phys. U.S.S.R. 8, 148 (1944)]Google Scholar
7. Van Harlingen, D. J., Physica B 109–110, 1710 (1982)Google Scholar
8. Ustinov, A. V., Hartmann, M., and Huebener, R. P., Europhys. Lett. 11, 175 (1990)Google Scholar
9. Ri, H. -C., Kober, F., Beck, A., Alff, L., Gross, R., and Huebener, R. P., to be publishedGoogle Scholar
10. Huebener, R. P., Ustanov, A. V., and Kaplunenko, V.K., Phys. Rev. B 41, 4831 (1990)Google Scholar
11. Ri, H. -C., Kober, F., Gross, R., Huebener, R. P., and Gupta, A., Phys. Rev. B 43 13739 (1991)Google Scholar
12. Huebener, R. P., Kober, F., Ri, H. -C., Knorr, K., Tsuei, C. C., and Scheuermann, M., Physica C 181, 345 (1991)Google Scholar
13. Huebener, R. P., Magnetic Flux Structures in Superconductors, Springer, Berlin, 1979 Google Scholar
14. Zeh, M., Ri, H.-C., Kober, F., Huebener, R. P., Ustinov, A. V., Mannhart, J., Gross, R., and Gupta, A., Phys. Rev. Lett. 64, 3195 (1990); Physica C 167, 6 (1990)Google Scholar
15. Kober, F., Ri, H. -C., Gross, R., Koelie, D., Huebener, R. P., and Gupta, A., Phys. Rev. B 44, 11951 (1991)Google Scholar
16. Maki, K., Low, J. Temp. Phys. 1, 45 (1969)Google Scholar
17. Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F., and Waszcak, J. V., Phys. Rev. Lett. 64, 3090 (1990)Google Scholar
18. De Gennes, P. G. and Matricon, J., Rev. Mod. Phys. 36, 45 (1964)Google Scholar
19. Bardeen, J. and Stephen, M. J., Phys. Rev. 140, A1197 (1965)Google Scholar
20. Nozieres, P. and Vinen, W. F., Phil. Mag. 14, 667 (1966)Google Scholar
21. Welp, U., et al., Phys. Rev. Lett. 67, 3180 (1991)Google Scholar
22. Inderhees, S. E. et al., Phys. Rev. Lett. 66, 232 (1991)Google Scholar
23. Ullah, S. and Dorsey, A. T., Phys. Rev. Lett. 65, 2066 (1990); Phys. Rev. B 44, 262 (1991)Google Scholar