Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T03:43:02.518Z Has data issue: false hasContentIssue false

Thermoelectric and Mechanical Properties of Ca0.9Yb0.1MnO3 Based Materials

Published online by Cambridge University Press:  01 February 2011

Atsuko Kosuga
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Nanotechnology Research Institute, 1-8-31, Midorigaoka, Osaka, 563-8577, Japan, +81-72-751-9541, +81-72-751-9622
Saori Urata
Affiliation:
[email protected], Japan Science and Technology Agency, 4-1-8, Honmachi, Kawaguchi, Saitama, 332-0012, Japan
Ryoji Funahashi
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Get access

Abstract

The Ca0.9Yb0.1MnO3/Ag composites(the ratio of Ag to Ca0.9Yb0.1MnO3 was 0, 4.7, 9.4, and 18.8 wt %) were prepared by wet milling various amounts of Ca0.9Yb0.1MnO3 and Ag2O powder mixtures followed by sintering in order to improve the mechanical properties of Ca0.9Yb0.1MnO3 for n-type legs of thermoelectric oxide devices. The obtained composites consisted of two phases such as Ca0.9Yb0.1MnO3 and metallic silver from the X-ray diffraction (XRD) analysis. The scanning electron microscope (SEM) analysis indicated that the Ag particles, the size of which was within 5 μm, were homogeneously dispersed in Ca0.9Yb0.1MnO3 matrix for all the composites. The σf of 18.8 wt% Ag composite became 251 MPa, which was 2 times larger value than that of Ca0.9Yb0.1MnO3. The power factor (S2ρ) was slightly improved by the addition of silver particles. The maximum S2ρ, i.e. 0.26 mWm-1K-2 at 573 K was obtained for 18.8 wt% Ag composite.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Terasaki, I., Sasago, Y., Uchinokura, K., Phys. Rev. B 56, R12685(1997).Google Scholar
2. Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., Sodeoka, S., Jpn. J. Appl. Phys. 39, L1127(2000).Google Scholar
3. Funahashi, R., Shikano, M., Appl. Phys. Lett. 81, 1459(2002).Google Scholar
4. Flahaut, D., Mihara, T., Funahashi, F., Nabeshima, N., Lee, K., Ohta, H., Koumoto, K., J. Appl. Phys. 100, 084911.1(2006).Google Scholar
5. Urata, S., Funahashi, R., Mihara, T., Proceedings of 2006 International conference on Thermoelectrics, 103(2007).Google Scholar
6. Fan, C. Rahaman, M. N., J. Amer. Ceram. Soc. 75(8), 2056(1992).Google Scholar
7. Nakada, Y., Kimura, T., J. Amer. Ceram. Soc. 80(2), 401(1997).Google Scholar
8. Sekino, T., Nakajima, T., Ueda, S., Niihara, K., J. Amer. Ceram. Soc. 80(5), 1139(1997).Google Scholar
9. Nawa, M., Yamazaki, K., Sekino, T., NIihara, K., J. Mater. Sci. 31(11), 2849(1996).Google Scholar
10. Niihara, K., J. Mater. Sci. Lett. 2, 221(1983).Google Scholar
11. Taguchi, H., Nagao, M., Sato, T., Shimada, M., J. Solid State Chem. 78, 312(1989).Google Scholar
12. Tatge, S., Natl. Bur. Stand. (U.S.), Circ. 539, I23(1953).Google Scholar
13. Ashby, A. F., Blunt, F. J., Bannister, M., Acta Metall. 37, 1847(1989).Google Scholar
14. Flinn, B., Ruehle, M., Evans, A. G., Acta Metall. 37, 3001(1989).Google Scholar
15. Sekino, T., Nakajima, T., Niihara, K., Mater. Lett. 29, 165(1996).Google Scholar