Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T01:32:20.305Z Has data issue: false hasContentIssue false

Thermodynamics and Kinetics of Melting and Growth of Crystalline Silicon Clusters

Published online by Cambridge University Press:  09 August 2011

P. Keblinski*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA and Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany, [email protected]
Get access

Abstract

Molecular-dynamics (MD) simulations and the Stillinger-Weber three-body potential are used to study the growth and stability of silicon clusters of diameters from 2 to 5 nm embedded in the melt. Our simulations show that the melting temperature of such nano-clusters is lower than the bulk melting temperature by an amount proportional to the inverse of the cluster size. We also show that the nature of the kinetics of such small Si clusters is essentially the same as that of the homoepitaxial growth. In particular, we show that the mobility of the highly-curved crystalliquid interface is controlled by diffusion in the adjacent melt, and is characterized by the same activation energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thompson, M. O. et. al., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
2. Galvin, G. J., Mayer, J. W., and Peercy, P. S., Appl. Phys. Lett. 46, 644 (1985).Google Scholar
3. Larcen, B. C., Tischler, J. Z., and Mills, D. M., J. Mater. Res. 1, 144 (1986).Google Scholar
4. Kluge, M. D., and Ray, J. R., Phys. Rev. B 39, 1738 (1989).Google Scholar
5. Grabow, M. H., Gilmer, G. H., and Bakker, A. F., Mater. Res. Soc. Symp. Proc. 141, 349 (1989).Google Scholar
6. see for example: Jackson, K. A., in Crystal Growth and Characterization, edited byUeda, R. and Mullin, J. B. (North-Holland, Amsterdam, 1985).Google Scholar
7. Uttomark, M. J., Thompson, M. O., and Clancy, P.. Phys. Rev. B 47, 15717 (1993).Google Scholar
8. Marques, L. A., Carturla, M-J., Rubia, T. D. de la, and Gilmer, G. H., J. Appl. Phys. 80, 6160 (1996).Google Scholar
9. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
10. Leudtke, W. D. and Landman, U., Phys. Rev. B 40, 1164 (1989).Google Scholar
11. Donovan, E. P. et al., J. Appl. Phys. 57, 1795 (1995).Google Scholar
12. Keblinski, P., Phillpot, S. R., Wolf, D. and Gleiter, H., J. Am. Ceram. Soc. 3,717 (1997).Google Scholar
13. Andersen, H. C., J. Chem. Phys. 72, 2384 (1980).Google Scholar
14. Broughton, J. Q. and Li, X. P., Phys. Rev. B 35, 9120 (1987).Google Scholar
15. Spaepen, F. and Shao, Y., Mater. Res. Soc. Symp. Proc. 398, 39 (1996).Google Scholar
16. Turnbull, D. and Fisher, J. C., J. Chem. Phys. 17, 71 (1949).Google Scholar