Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:50:38.888Z Has data issue: false hasContentIssue false

Thermodynamic Properties of the Fcc Modification of Solid Fullerene C60

Published online by Cambridge University Press:  15 February 2011

V.I. Zubov
Affiliation:
Universidade Federal de Goiás, Depto Física, 74001-970, Goiânia, GO, Brazil Peoples' Friendship University, Moscow, Russia
N.P. Tretiakov
Affiliation:
Universidade Federal de Goiás, Depto Física, 74001-970, Goiânia, GO, Brazil Peoples' Friendship University, Moscow, Russia
J.N. Teixeira Rabelo
Affiliation:
Universidade Federal de Goiás, Depto Física, 74001-970, Goiânia, GO, Brazil
J.F.Sanchez Ortiz
Affiliation:
Peoples' Friendship University, Moscow, Russia
Get access

Abstract

We have applied the correlative method of unsymmetrized self-consistent field to study thermodynamic properties of the FCC phase of solid fullerene C60 which is stable at T≥261 K. We have calculated the temperature dependences of the intermolecular distance, cohesive energy, bulk moduli, thermal expansion coefficient, elastic constants and sound velocities. The central intermolecular potential of Girifalco and its approximation by Yakub have been used. We have infered the crucial role of anharmonicity of lattice vibrations at high temperatures. It has been noted also that unlike other Van der Waals crystals, for the considered modification of C60 the quantum effects are small at any temperature. Our results agree closely with available experimental data. Some properties near the spinodal point are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The Fullerenes, edited by Kroto, H.W., Fisher, J.E. & Cox, D.E. (Pergamon Press, Oxford - New York, 1993).Google Scholar
2. Sachidanandam, R. and Harris, A.B., Phys. Rev. Lett. 67, 1467 (1991).Google Scholar
3. Bruijn, J. de, Dworkin, A., Szwar, H., Godard, J., Ceolin, R., Fabre, C. and Rassat, A., Europhys. Lett. 24, 551 (1993).Google Scholar
4. Heiney, P.A., Fisher, J.E., McGie, A.R., Romanow, W.J., Denenstein, A., McCauley, J.P., Smith, A.B. and Cox, D.E., Phys. Rev. Lett. 66, 2911 (1991).Google Scholar
5. Nguyen, J.H., Kruger, M.B. and Jeanloz, R., Solid State Commun. 88, 719 (1993).Google Scholar
6. Blank, V., Popov, M., Buga, S., Davydov, V., Denisov, V.N., Ivlev, A.N., Martin, B.N., Agafonov, V. and Ceolin, R., Phys. Lett. A 188, 281 (1994).Google Scholar
7. Hodeau, J.L., Tonnere, J.M., Bouchet-Fabre, B., Regueiro, M. Nunez, Capponi, J.J. and Perroux, M., Phys. Rev. B 50, 10311 (1994).Google Scholar
8. Bashkin, I.O., Rashchupkin, V.I., Gurov, A.F., Moravsky, A.P., Rybchenko, D.G., Kobelev, N.P., Soifer, Ya.M. and Ponyatovsky, E.G., J.Phys. Condens. Matter 6, 7491 (1994).Google Scholar
9. Sirota, N.N., Crystal Res. Technol. 17, 661 (1982); 22, 1343 (1987).Google Scholar
10. Zubov, V.I. and Terletsky, Ya.P., Ann. Phys. (Leipzig) 24, 97 (1970).Google Scholar
11. Zubov, V.I., Ann. Phys. (Leipzig) 31, 33 (1974).Google Scholar
12. Zubov, V.I., Phys. Stat. Sol. (b) 72, 71, 83 (1975).Google Scholar
13. Zubov, V.I., Phys.Stat. Sol. (b) 87, 385 (1978); 88, 43 (1978).Google Scholar
14. Yukalov, V.I. and Zubov, V.I., Fortschr. Phys. 31, 627 (1983).Google Scholar
15. Ortiz, J.F. Sanchez, Tretyakov, N.P. and Zubov, V.I., Phys. Stat. Sol. (b) 181, K7 (1994).Google Scholar
16. Zubov, V.I., Ortiz, J.F. Sanchez, Tretiakov, N.P. and Yusef, A.E., Int. J. Mod. Phys, in print.Google Scholar
17. Boer, J. de, Physica 14, 139 (1948).Google Scholar
18. Girifalco, L.A., J.Phys. Chem. 96, 858 (1992).Google Scholar
19. Li, X.-P., Lu, J.P. and Martin, R.M., Phys. Rev. B 46, 4301 (1992).Google Scholar
20. Yakub, L.N., Fiz. Nizk. Temp. 19, 726 (1993), in Russian.Google Scholar
21. Zubov, V.I., Tretiakov, N.P., Rabelo, J.N. Teixeira and Ortiz, J.F. Sanchez, Phys. Lett. A 194, 223 (1994).Google Scholar
22. Fisher, J.E. and Heiney, P.A, J.Phys. Chem. Solids (1993).Google Scholar
23. Pan, C., Sampson, M.P., Chai, Y., Hange, R.H. and Margrave, J.L., J. Phys. Chem. 95, 2944 (1991).Google Scholar
24. Fisher, J.E., Heiney, P.A., McGie, A.R., Romanow, W.J., Denenstein, A.M., McCauley, J.P. and Smith, A.B., Science 252, 1288 (1991).Google Scholar
25. Leibfried, G. and Ludwig, W., Theory of Anharmonic Effects in Crystals (Academic Press Inc., New York - London, 1961).Google Scholar
26. Zubov, V.I., Phys. Stat. Sol. (b) 101, 95 (1980).Google Scholar