Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:57:25.311Z Has data issue: false hasContentIssue false

Thermodynamic Modelling of the Pd-Te-Ru System for Nuclear Waste Glasses Application

Published online by Cambridge University Press:  01 February 2011

Stephane Gossé
Affiliation:
[email protected], CEA, DPC, Gif-sur-Yvette, France
Sophie Schuller
Affiliation:
[email protected], CEA, DTCD, Bagnols sur Cèze, France
Christine Guéneau
Affiliation:
[email protected], CEA, DPC, Gif-sur-Yvette, France
Get access

Abstract

The waste management process of the French nuclear spent fuels is managed by a new vitrification conditioning step. High level radioactive borosilicate glasses are melted by induction in a cold crucible to accommodate a wide range of minor actinides and fission products. Among the fission products, platinoids precipitate in the form of (Pd-Te, Ru-Rh, Ru) metallic particles in the glass. The microstructure of these phases can affect the physicochemical properties of the melt during the vitrification process. To predict the thermodynamic properties of these alloys in the glass, a database is being developed on the Pd-Rh-Ru-Te system using the Calphad method. The binary (Pd-Te, Pd-Ru, Ru-Te) and ternary (Pd-Te-Ru) systems have been modelled. The Pd-Te-Ru ternary system built by extrapolation from the binaries enables to calculate ternary isothermal sections and thermodynamic properties of the platinoid phases between 873 K and 1573 K. Solidification paths are also calculated for Pd-Te alloys representative for those observed in the glasses. The phase composition at equilibrium and the Ru solubility limit in Pd-Te alloys are also calculated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Galoisy, L. Calas, G. Morin, G. Pugnet, S. Fillet, C. J. Mater. Research 13, 5 (1998)Google Scholar
2 Pflieger, R., Lefebvre, L. Malki, M. Allix, M. Grandjean, A. J. Nuclear Mater. 389, 3 (2009)Google Scholar
3.http://www.cea.fr/english_portal/energy/research_on_nuclear_wastesGoogle Scholar
4 Saunders, N. Miodownik, A.P., (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon Materials Series, Vol. 1, Ed. Cahn, R W (1998)Google Scholar
5 Okamoto, H. J. Phase Equil. 13, 1 (1992)Google Scholar
6 Massalski, T.B., Okamoto, H. Subramian, P.R. and Kacprzak, L. Binary alloy phase diagrams Vol. 3 (2nd ed.), edited by ASM International, Materials Park, Ohio (1990)Google Scholar
7 Chattopadhyay, G. Bhatt, Y. J. Khera, S. K. J. Less Common Met. 123 (1986)Google Scholar
8 Ipser, H. Schuster, W. J. Less Common Met. 125 (1986)Google Scholar
9 Kelm, M. Gortzen, A. Kleykamp, H. Pentighous, H. J. Less Common Met. 166 (1990)Google Scholar
10 Medvedeva, Z. S. Klochko, M. A. et al. , Russ. J. Inorg. Chem. 6, 7 (1961)Google Scholar
11 Kim, W.S., Chao, G.Y., Cabri, I.R., J. Less Common Met. 162 (1990)Google Scholar
12 Kleykamp, H. J. Nucl. Mater. 167 (1989)Google Scholar
13 Darling, S. Yorke, J.M., Platinum Met. Rev. 4, No. 3 (1960)Google Scholar
14 Rudnitskii, A.A. Polyakova, R. S. Russ. J. Inorg. Chem. (Engl. Transl.) 4, No. 6 (1959)Google Scholar
15 Obrowski, W. Zwingmann, G. Zeitschrift Fur Metallkunde 33, 7, pp. 453455 (1962)Google Scholar
16 Tripathi, S. N. Bharadwaj, S. R. Dharwadkar, S. J. Phase Equil. 14, 5 (1993)Google Scholar
17 Okamoto, H. J. Phase Equil. 16, 6 (1995)Google Scholar
18 Zhao, H. Schils, H. W. Raub, C. J. J. Less Common Met. 86 (1982)Google Scholar
19 Zhao, H. Schils, H. W. Raub, C. J. J. Less Common Met. 113 (1985)Google Scholar
20 Bernath, S. Kleykamp, H. Smykatz-Kloss, W., J. Nucl. Mater. 209 (1994)Google Scholar
21 Basu, M. Ali, Bharadwaj, S. R. J. Nucl. Mater. 340 (2004)Google Scholar
22 Basu, M. Ali, Shirsat, A. N. Mishra, R. Kerkar, A. S. et al. J. Alloys Compd. 352 (2003)Google Scholar
23 Svendsen, S. R. J. Chem. Thermodynamics 9 (1977)Google Scholar