Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T19:57:33.006Z Has data issue: false hasContentIssue false

Thermochemistry of Hf-Zirconolite, CaHf Ti2O7

Published online by Cambridge University Press:  10 February 2011

Robert L. Putnam
Affiliation:
Thermochemistry Facility; University of CA, Davis; 4440 Chemistry Annex; Davis, CA [email protected] [email protected]
Alexandra Navrotsky
Affiliation:
Thermochemistry Facility; University of CA, Davis; 4440 Chemistry Annex; Davis, CA [email protected] [email protected]
Brian F. Woodfield
Affiliation:
Department of Chemistry and Biochemistry; Brigham Young University; C100 BNSN Provo, UT 84602; [email protected]@[email protected]
Jennifer L. Shapiro
Affiliation:
Department of Chemistry and Biochemistry; Brigham Young University; C100 BNSN Provo, UT 84602; [email protected]@[email protected]
Rebecca Stevens
Affiliation:
Department of Chemistry and Biochemistry; Brigham Young University; C100 BNSN Provo, UT 84602; [email protected]@[email protected]
Juliana Boerio-Goates
Affiliation:
Department of Chemistry and Biochemistry; Brigham Young University; C100 BNSN Provo, UT 84602; [email protected]@[email protected]
Get access

Abstract

The formation enthalpy, - 3752.3 ± 4.7 kJ·mol−1, of Hf-zirconolite, CaHfTi2O7, was obtained using high temperature oxide-melt solution calorimetry. Combined with heat capacity data obtained using low temperature adiabatic calorimetry we report the heat capacity (Cp) and the standard molar formation energetics (ΔH°f. elements, Δ S°T, and ΔG°f. elements)for Hf-zirconolite from T = 298.15 K to T = 1500 K. Comparison of Hf-zirconolite with Zr-zirconolite is made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ewing, R. C., Lutze, W., Weber, W. J., J. Mater. Res.; 10, 2,243–246 (1995).Google Scholar
2. Radioactive Waste forms for the Future, edited by Lutze, W. and Ewing, R. C. (North Holland Publishing, New York, NY, 1988).Google Scholar
3. Putnam, R. L.; Navrotsky, A.; Woodfield, B. F.; Boerio-Goates, J.; Shapiro, J. L.; J. Chem. Thermodynamics. In Press.Google Scholar
4. Woodfield, B. F.; Boerio-Goates, J.; Shapiro, J. L.; Putnam, R. L.; Navrotsky, A.; J. Chem. Thermodynamics. In Press.Google Scholar
5. Putnam, R. L., Navrotsky, A., Woodfield, B. F., Shapiro, J. L., Boerio-Goates, J., in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries IV. Ceramic Transactions Volume 93 (Am. Ceramic Soc., Westerville, OH, In Press 1999).Google Scholar
6. Putnam, R. L.; Navrotsky, A.; Woodfield, B. F.; Shapiro, J. L.; Stevens, R.; Boerio-Goates, J.; J. Chem. Thermodynamics. Submitted Dec. 1998.Google Scholar
7. Boerio-Goates, J., Woodfield, B. F., Can. J. Chem 66, 645650 (1988).Google Scholar
8. Battley, E. H., Putnam, R. L., Boerio-Goates, J., Thermochim. Acta 298, 37 (1997).Google Scholar
9. Navrotsky, A., Phys. Chem. Min. 2, 89104 (1977).Google Scholar
10. Navrotsky, A., Phys. Chem. Min. 24, 222241 (1997).Google Scholar
11. Woodfield, B. F.; Shapiro, J. L.; Stevens, R.; Boerio-Goates, J.; Putnam, R. L.; Navrotsky, A.; J Chem. Thermodynamics. Submitted Dec. 1998.Google Scholar
12. Kiseleva, I., Navrotsky, A., Belitsky, I.A., Fursenko, B.A., Am. Mineral. 81, 668675 (1996).Google Scholar
13. Robie, R. A., Hemingway, B. S., Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures (U. S. Government Printing Office: Washington, DC. 1995).Google Scholar