Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:49:39.786Z Has data issue: false hasContentIssue false

Thermochemistry of Elementary Actinide Sulfide Molecules: A Gas-Phase Study of Curium Sulfide

Published online by Cambridge University Press:  01 February 2011

Cláudia C. L. Pereira
Affiliation:
[email protected], Instituto Tecnológico e Nuclear, Unidade de Ciências Químicas e Radiofarmacêuticas, Sacavém, Portugal
Joaquim Marçalo
Affiliation:
[email protected], Instituto Tecnológico e Nuclear, Unidade de Ciências Químicas e Radiofarmacêuticas, Sacavém, Portugal
John K. Gibson
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California, United States
Get access

Abstract

Experiments to explore the reactivity and thermochemistry of elementary transuranium sulfide molecules have been initiated to expand the basis for a fundamental understanding of actinide bonding, and to enable the development of advanced theoretical methodologies which will be of general applicability to more complex molecular systems. Bimolecular gas-phase reactions between transuranium actinide ions and neutral reagents are employed to obtain thermochemical information. The initial actinide sulfide studies have focused on obtaining the 298 K bond dissociation energy for the CmS+ ion, D[Cm+-S] = 475±37 kJ mol-1; from this result and an estimate of IE[CmS] ≈ IE[CmO] + 0.5 eV, we obtain D[Cm-S] = 563±64 kJ mol-1. The bond dissociation energies, D[Cm+-S] and D[Cm-S] are approximately 200 kJ mol-1 and 150 kJ mol-1 lower than for the corresponding oxides, CmO+ and CmO. The nature of the bonding in the CmS+ ion appears to be generally similar to that in other oxophilic metal sulfides. Comparisons with previous bond dissociation energies reported for ThS and US may suggest a difference in the An-S bonds for these early actinide sulfides as compared with CmS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gibson, J. K. International Journal of Mass Spectrometry 214 (1), 1 (2002).Google Scholar
2 Gibson, J. K. and Marçalo, J., Coordination Chemistry Reviews 250 (7-8), 776 (2006).Google Scholar
3 Heaven, M. C. Gibson, J. K. and Marçalo, J., in The Chemistry of the Actinide and Transactinide Elements, Third Edition, edited by Morss, L. R. Edelstein, N. M. and Fuger, J. (Springer, Dordrecht, 2010 in press), Vol. 6.Google Scholar
4 Marçalo, J. and Gibson, J. K. Journal of Physical Chemistry A113 (45), 12599 (2009).Google Scholar
5 Kovacs, A. R. Konings, J. M. Raab, J. and Gagliardi, L. Physical Chemistry Chemical Physics 10 (8), 1114 (2008).Google Scholar
6 Macchia, G. La, Infante, I. Raab, J. Gibson, J. K. and Gagliardi, L. Physical Chemistry Chemical Physics 10 (48), 7278 (2008).Google Scholar
7 Dam, H. H. Reinhoudt, D. N. and Verboom, W. Chemical Society Reviews 36 (2), 367 (2007).Google Scholar
8 Gaunt, A. J. Scott, B. L. and Neu, M. P. Inorganic Chemistry 45 (18), 7401 (2006).Google Scholar
9 Grønvold, F., Drowart, J. and Westrum, E. F. Jr. , The Chemical Thermodynamics of Actinide Elements and Compounds: The Actinide Chalcogenides. (IAEA, Vienna, 1984).Google Scholar
10 Gibson, J. K. Haire, R. G. Santos, M. Matos, A. Pires de, and Marçalo, J., Journal of Physical Chemistry A112 (45), 11373 (2008).Google Scholar
11 Guan, S. H. and Marshall, A. G. International Journal of Mass Spectrometry 157, 5 (1996).Google Scholar
12 Su, T. and Chesnavich, W. J. Journal of Chemical Physics 76 (10), 5183 (1982).Google Scholar
13 Cheng, P. Koyanagi, G. K. and Bohme, D. K. Journal of Physical Chemistry A110 (47), 12832 (2006).Google Scholar
14 Lias, S. G. Bartmess, J. E. Liebman, J. F. Holmes, J. L. Levin, R. D. and Mallard, W. G. Journal of Physical and Chemical Reference Data 17, 1 (1988).Google Scholar
15 Holmes, J. L. Aubry, C. and Wang, X. International Journal of Mass Spectrometry 267, 263 (2007).Google Scholar
16 Ruscic, B. and Berkowitz, J. Journal of Chemical Physics 98 (4), 2568 (1993).Google Scholar
17 Peebles, L. R. and Marshall, P. Chemical Physics Letters 366, 520 (2002).Google Scholar
18 Kretzschmar, I. Schröder, D., Schwarz, H. and Armentrout, P. B. International Journal of Mass Spectrometry 249, 263 (2006).Google Scholar
19 Erdmann, N. Nunnemann, M. Eberhardt, K. Herrmann, G. Huber, G. Kohler, S. Kratz, J. V. Passler, G., Peterson, J. R. Trautmann, N. and Waldek, A. Journal of Alloys and Compounds 271, 837 (1998).Google Scholar
20 Gibson, J. K. Journal of Physical Chemistry A107 (39), 7891 (2003).Google Scholar