No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
The thermal stability of Si/Si0.85Ge0.15/Si p-type modulation doped double heterostructures grown by the Ultra High Vacuum/ Chemical Vapor Deposition technique has been examined by Hall measurement, transmission electron microscopy, secondary ion mass spectroscopy, and Raman spectroscopy. As deposited heterostructures showed two-dimensional hole gas formation at the abrupt Si/SiGe and SiGe/Si interfaces. Annealing at 800 °C. for 1 hr. caused the diffusion of boron acceptors to the heterointerfaces, degrading the hole mobilities observed in the two dimensional hole gas. Rapid redistribution of boron, causing a loss of the 2 dimensional carrier behavior, was observed after a 900 °C, 0.5 hr. anneal. Neither Ge interdiffusion nor the generation of misfit dislocations were observed in the annealed heterostructures, evincing the defect-free crystal quality of these as-grown strained heteroepitaxial layers. The superior stability of these heterostructures have strong positive implications for Si:Ge heterojunction devices.