Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T12:55:36.394Z Has data issue: false hasContentIssue false

Thermal Stability of Precipitates in a Rapidly Quenched Ti-Al-Si Alloy*

Published online by Cambridge University Press:  21 February 2011

S.H. Wrang
Affiliation:
Materials Science Division, Barnett Institute of Chemical Analysis and Materials Science, Northeastern University, Boston, MA 02115
Y.Z. Lu
Affiliation:
Materials Science Division, Barnett Institute of Chemical Analysis and Materials Science, Northeastern University, Boston, MA 02115
B.C. Giessen
Affiliation:
Materials Science Division, Barnett Institute of Chemical Analysis and Materials Science, Northeastern University, Boston, MA 02115
Get access

Abstract

Ostwald ripening of precipitates in rapidly solidified Ti- 5A1-2Si (wt.%) has been studied by TEM. Results show that particle coarsening at 700 and 800°C is controlled by volume diffusion. Diffusion coefficients of Si in a-Ti were found to be ˜7.5 × 10−13 cm2/sec at 700°C and ˜1.2 × 10−11 cm2 /sec at 800°C.At these temperatures, microstructural refinement due to rapid quenching had no noticeable effect on the coarsening mechanism for the RS Ti-5A1-2Si alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution #192 from the Barnett Institute

References

REFERENCES

1. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids, 19, 35 (1961).10.1016/0022-3697(61)90054-3Google Scholar
2. Wagner, C., Z. Elektrochem, 65, 581 (1961).Google Scholar
3. Whang, S.H., J. Metals (AIME), Vol. 36, No. 4 (1984).Google Scholar
4. Chi, C.S. and Whang, S.H., See proceedings of this symposiumGoogle Scholar
5. Pontikakas, I. and Jones, H., Materials Science, 16, 27 (1982).Google Scholar
6. Mahoney, M.W. and Paton, N.E., Metall. Trans. A, 9A, 1497 (1978).10.1007/BF02661828Google Scholar
7. Anthony, K.C., Trans. TMS-AIME, 242, 1454 (1968).Google Scholar
8. Lu, Y.Z. and Whang, S.H., 1983 AIME Fall meeting, Oct. 2–6, Philadelphia, PA.Google Scholar
9. Sauthoff, G. and Kahlweit, M., Acta Metall., 17, 1501 (1969).10.1016/0001-6160(69)90013-3Google Scholar
10. Ardell., A.J. Acta Met., 20, 61 (1972).10.1016/0001-6160(72)90114-9Google Scholar
11. Brailsford, A.D. and Wynblatt, P., Acta Metall., 27, 489 (1979).10.1016/0001-6160(79)90041-5Google Scholar
12. Doner, M. and Conrad, H., Met. Trans., 4, 2809 (1975).10.1007/BF02644581Google Scholar
13. Papazoglu, T.P. and Hepworth, M.T., Trans. TMS-AIME, 242, 698 (1968).Google Scholar
14. Purdy, G.R., Met. Sci. J1, 5, 81 (1971).10.1179/030634571790439685Google Scholar
15. Footner, P.K. and Alcock, C.B., Met. Trans., 3, 2633 (1972).10.1007/BF02644239Google Scholar
16. Ardell, A.J., Acta Metall., 15, 1772 (1967).10.1016/0001-6160(67)90073-9Google Scholar
17. Shunk, F.A., Constitution of Binary Alloys, Second Supplement, McGraw- Hill Book Co., 682 (1969).Google Scholar