Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:41:23.090Z Has data issue: false hasContentIssue false

Thermal stability of magnetite (Fe3O4) nanoparticles

Published online by Cambridge University Press:  15 March 2011

B.H. Ong
Affiliation:
Faculty of Engineering, Multimedia University, Cyberjaya, Selangor, Malaysia
N. K. Devaraj
Affiliation:
Faculty of Engineering, Multimedia University, Cyberjaya, Selangor, Malaysia
M. Matsumoto
Affiliation:
Faculty of Engineering, Multimedia University, Cyberjaya, Selangor, Malaysia
M. H. Abdullah
Affiliation:
Faculty of Science and Technology, National University of Malaysia, Bangi, Selangor, Malaysia
Get access

Abstract

Magnetite (Fe3O4) nanoparticles are prime candidates for biomedical applications due to their biocompatibility and good magnetic properties. However, magnetite is highly susceptible to oxidation when exposed to the atmosphere. In order to preserve their properties, it is important for the particles to maintain their magnetite phase. In this study, magnetite nanoparticles were prepared using the conventional co3precipitation of ferrous (Fe2+) and ferric (Fe3+) chloride salt solutions with sodium hydroxide (NaOH). Thermogravimetric analysis (TGA) was subsequently carried out to identify the transition temperatures. Energy Dispersive X3Ray (EDX) spectrum shows the presence of impurities, such as sodium (Na) and chloride (Cl) ions in the as3synthesized magnetite nanoparticles. The as3synthesized samples were then calcined in a chamber furnace according to TGA data. The calcined samples were next characterised by X3ray Powder Diffraction (XRD), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM) to determine the changes in phase and magnetic properties of the nanoparticles as a function of different calcination temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cornell, R.M. and Schwertmann, U. in The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim) pp. 403404.Google Scholar
2. Morales, M. A., Jain, T. K., Labhasetwar, V., and Leslie-Pelecky, D. L., Appl. Phys. 97, 10Q905 (2005).Google Scholar
3. Tang, J., Myers, M., Bosnick, K. A., and Brus, L. E., J. Phys. Chem. B. 107, 7501 (2003).Google Scholar
4. Hyeon, T., Chem. Commun. 927 (2003).Google Scholar
5. Gupta, K., and Gupta, M., Biomaterials. 26, 3995 (2005).Google Scholar
6. Jarrett, B. R., Frendo, M., Vogan, J. and Louie, A. Y., Nanotechnology. 18, 035603 (2007).Google Scholar
7. Kim, C. Y., Jang, S. C., and Yi, S. C., J. Ceram. Process. Res. 5, 264 (2004).Google Scholar
8. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Philip, M. R., Wang, S. X., and Li, G., J. Am. Chem. Soc. 126, 273 (2004).Google Scholar
9. Yen, F. S., Chen, W. C., Yang, J. M., and Hong, C. T., Nano. Letters. 2, 245 (2002).Google Scholar
10. Kim, D. K., Zhang, Y., Voit, W., Rao, K. V., Kehr, J., Bjelke, B., and Muhammed, M., Scripta. Mater. 44, 1713 (2001).Google Scholar
11. Vayssieres, L., Int. J. Nanotechnol. 1, 1 (2004).Google Scholar
12. Roca, C, Morales, M. P., Grady, K. O., and Serna, C. J., Nanotechnology. 17, 2783 (2006).Google Scholar
13. Goya, G. F., Berquo, T. S., Fonseca, F. C., and Morales, M. P., J. Appl. Phys. 94, 3520 (2003).Google Scholar
14. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Philip, M. R., Wang, S. X., and Li, G., J. Am. Chem. Soc. 126, 273 (2004).Google Scholar
15. Thapa, D., Palkar, V. R., Kurup, M. B., and Malik, S. K., Mater. Letters. 58, 2692 (2004).Google Scholar
16. Toneguzzo, P., Viau, G., Acher, O., Guillet, F., Bruneton, E., Fievet-Vincent, F., and Fievet, F., J. Mater. Sci. 35, 3767 (2000).Google Scholar
17. Zhang, Y., Huang, Z., Tang, F., and Ren, J., Thin. Solid. Films. 515, 2555 (2006).Google Scholar
18. Rashad, M. M., Mohamed, R. M., and El-Shall, H., J. Mater. Proces. Techn. 198, 139 (2008).Google Scholar
19. Zhao, L., Yang, H., Cui, Y., Zhao, X., and Feng, S., J. Mater. Sci. 42, 423 (2007).Google Scholar
20. Lu, J., Yang, S., Ng, K. M., Su, C. H., Yeh, C. S., Wu, Y. N., and Shieh, D. B., Nanotechnology. 17, 5812 (2006).Google Scholar