Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:56:30.108Z Has data issue: false hasContentIssue false

The Thermal Stability of a Single-Grain Mg-Zn-Y Icosahedral Quasicrystal

Published online by Cambridge University Press:  17 March 2011

Z.P. Luo
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A
Y.L. Tang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A Ames Laboratory, Iowa State University, Ames, IA 50011, U.S.A
D.J. Miller
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A
M.J. Kramer
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011, U.S.A
I.R. Fisher
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011, U.S.A
P.C. Canfield
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011, U.S.A
Get access

Abstract

The stability of the Mg-Zn-Y icosahedral quasicrystal (IQC) has been studied by long-term annealing of a single grain IQC in quartz tubes. Decomposition of the IQC was observed after annealing at high temperatures (T≥773 K) sealed in Ar. During the decomposition process, the quasilattice parameter aR was found to decrease, associated with a decrease in Mg content of the IQC phase as confirmed by quantitative x-ray energy dispersive spectroscopy analyses. In addition, a new cubic approximant has been found in the annealed samples. This cubic approximant has a face-centered cubic (fcc) structure with lattice parameter of a = 1.276 nm, which is about (1/τ) times smaller than that of the fcc W'-(MgZnY) with a = 2.05 nm reported previously (where τ is the golden ratio).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Luo, Z.P., Zhang, S.Q., Tang, Y.L., Zhao, D.S., Scripta metall. mater., 28, 1513 (1993); 30, 393 (1994).Google Scholar
2. Niikura, A., Tsai, A.P., Inoue, A., Masumoto, T., Phil. Mag. Lett., 69, 351 (1994).Google Scholar
3. Langsdorf, A., Ritter, F., Assmus, W., Phil. Mag. Lett., 75, 381 (1997).Google Scholar
4. Luo, Z.P., Sui, H.X., Zhang, S.Q., Metall. Mater. Trans., 27 A, 1779 (1996).Google Scholar
5. Tamura, N., Beyss, M., Urban, K., Phil. Mag. Lett., 74, 89 (1996).Google Scholar
6. Tsai, A.P., Niikura, A., Inoue, A., Masumoto, T., J. Mater. Res., 12, 1468 (1997).Google Scholar
7. Abe, E., Tsai, A.P., Phys. Rev. Lett., 83, 753 (1999).Google Scholar
8. Fisher, I.R., Islam, Z., Panchula, A.F., Cheon, K.O., Kramer, M.J., Canfield, P.C., Goodman, A.I., Phil. Mag. B, 77, 1601 (1998).Google Scholar
9. Langsdorf, A., Seuring, C., Ritter, F., Assmus, W., Cryst. Res. Tech., 32, 1067 (1997).Google Scholar
10. Sugiyama, K., Yasuda, K., Ohsuna, T., Hiraga, K., Z. Kristallogr., 213, 537 (1998).Google Scholar
11. Takakura, H., Sato, A., Yamamoto, A., Tsai, A.P., Phil. Mag. Lett., 78, 263 (1998).Google Scholar
12. Fisher, I.R. and Kramer, M.J., unpublished work.Google Scholar
13. Luo, Z.P., Hashimoto, H., Micron, 31, 487 (2000).Google Scholar
14. Sterzel, R., Assmus, W., Kounis, A., Miehe, G., Fuess, H., Phil. Mag. Lett., 80, 239 (2000).Google Scholar