Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:42:36.588Z Has data issue: false hasContentIssue false

Thermal stability and structural evolution of low-K Fluorinated amorphous carbon during thermal annealing

Published online by Cambridge University Press:  10 February 2011

Hongning Yang
Affiliation:
Sharp Microelectronics Technology, Inc., 5700 NW Pacific Rim Blvd., Camas, WA 98607
Douglas J. Tweet
Affiliation:
Sharp Microelectronics Technology, Inc., 5700 NW Pacific Rim Blvd., Camas, WA 98607
Yanjun Ma
Affiliation:
Sharp Microelectronics Technology, Inc., 5700 NW Pacific Rim Blvd., Camas, WA 98607
Tue Nguyen
Affiliation:
Sharp Microelectronics Technology, Inc., 5700 NW Pacific Rim Blvd., Camas, WA 98607
David R. Evans
Affiliation:
Sharp Microelectronics Technology, Inc., 5700 NW Pacific Rim Blvd., Camas, WA 98607
S.-T. Hsu
Affiliation:
Sharp Microelectronics Technology, Inc., 5700 NW Pacific Rim Blvd., Camas, WA 98607
Get access

Abstract

Highly crosslinked a-F:C films can undergo a significant change after thermal annealing, where the film expands by ∼3%, the density reduces by ∼10% and the internal stress changes from compressive to tensile. The loss of fluorine concentration and the reduction of CF. are accompanied by the transition of (C-C, sp3) to (C=C, sp2) groups. After annealing, the dielectric constant is reduced and the leakage current increases slightly. Most importantly, these changes occur only at the initial stage of annealing. After the initial annealing, the a-F:C film tends to be thermally stable and retains reasonably good electrical properties as a low-k interlayer dielectric. The profound impact of these results on Cu/a-F:C integration will be briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review, see d'Agostino, R. et al. in Plasma Deposition, Treatment, and Etching of Polymer, ed. by R., d' Agostino, Academic Press, New York, 1990, pp. 96–62.Google Scholar
2. Endo, K. and Tatsumi, T., J. Appl. Phys. 78, 1370 (1995).Google Scholar
3. Kudo, H., Shinohara, R., and Yamada, Y., Mat. Res. Soc. Proc. 381, 105 (1995).Google Scholar
4. Kudo, H., Shinohara, R., Takeishi, S., Awaji, N. and Yamada, Y.: Jpn. J. Appl. Phys. 35. part 1, 1583 (1996).Google Scholar
5. Grill, A., Patel, V., Saenger, K.L., Jahnes, C., Cohen, S.A., Schrott, A.G., Edelstein, D.C. and Paraszcak, J.R., Mat. Res. Soc. Proc. 443, 155 (1996).Google Scholar
6. Mountsier, T.W. and Kumar, D., Mat. Res. Soc. Proc. 443, 41 (1996).Google Scholar
7. Theil, J.A., Mertz, F., yairi, M.. Seaward, K., Ray, G. and Kooi, G., Mat. Res. Soc. Proc. 476, 31 (1997).Google Scholar
8. Robles, S., Xu, P., Yua, W.-F., Huang, J. and Fairbairn, K., in Advanced Metallization and Interconnect systems for ULSI Systems Conference, San Diego, CA, 1997, pp. 373.Google Scholar
9. Yang, H.-N., Nguyen, T., Ma, Y.-J. and Hsu, S.-T., Proceedings of DUMIC Conference, Santa Clara, CA, 1998, pp. 38.Google Scholar
10. Mountsier, T.W., Proceedings of DUMIC Conference, Santa Clara, CA, 1998, pp. 109.Google Scholar
11. Matsubara, Y., Endo, K., Tatsumi, T. and Horiuchi, T., Mat. Res. Soc. Proc. 476, 19 (1997).Google Scholar
12. Parratt, L.G., Phys. Rev. 95, 359 (1954).Google Scholar
13. de Boer, D.K.G., Phys. Rev. B44, 498 (1991).Google Scholar