Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:55:22.497Z Has data issue: false hasContentIssue false

Thermal Pulse Annealing of Hg1−xCdxTe

Published online by Cambridge University Press:  15 February 2011

K. C. Dimiduk
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
W. G. Opyd
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
M. E. Greiner
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
J. F. Gibbons
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
T. W. Sigmon
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
Get access

Abstract

Thermal pulse annealing has been used to modify the near surface of Hg1−xCdxTe. Using anneals of approximately 260°C for seven seconds, the crystal quality of epitaxial HgCdTe surfaces can be improved as observed by MeV He+ ion channeling. Similar anneals have also been used to repair the damage resulting from a 250 keV, 101511 B/cm2 implant into HgCdTe held at LN2. For higher temperatures and/or longer anneals, surface Hg loss is observed. Rutherford Backscattering measurements are used to measure this loss. The resulting loss rate data is described by No= A exp (−ΔE/kT) where A and ΔE depend on the material composition with A = 1029, ΔE = 1.8 eV and A = 1036, ΔE = 2.6 eV for x = 0.23 and 0.4, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Formerly under maiden name K. L. Conway.

b

Also with Lockheed Palo Alto Research Laboratory, Palo Alto, CA 94304.

References

REFERENCES

1.Takita, K., Masuda, K., Kudo, H. and Seki, S., Appl. Phys. Lett. 37 (5), 460 (1980).Google Scholar
2.Silberman, J. A., Morgen, P., Lindau, I., Spicer, W. E. and Wilson, J. A., J. Vac. Sci. Technol. 21 (1), 154 (1982).Google Scholar
3.Magee, T. J. and Raccah, P., Proc. of IRIS Specialty Group on Detectors, San Diego, July 1982.Google Scholar
4.Bubulac, L. O., Tennant, W. E., Riedel, R. A. and Magee, T. J., J. Vac. Sci. Technol. 21 (1), 251 (1982).Google Scholar
5. To be published, private communication with L. O. Bubulac, Rockwell International Science Center, Thousand Oaks, CA 91360.Google Scholar
6.Conway, K. L., Opyd, W. G., Greiner, M. E., Gibbons, J. F., Sigmon, T. W. and Bubulac, L. O., Appl. Phys. Lett. 41 (8), 750 (1982).Google Scholar
7.Conway, K. L., Opyd, W. G., Gibbons, J. F. and Sigmon, T. W., Proc. IBMM II, Grenoble, 1982.Google Scholar