Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:50:50.875Z Has data issue: false hasContentIssue false

Thermal Plasma Synthesis of Fe-Co Alloy Nanoparticles

Published online by Cambridge University Press:  10 February 2011

John Henry J. Scott
Affiliation:
National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899.
Zafer Turgut
Affiliation:
Department of Materials Science and Engineering
Krishna Chowdary
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213.
Michael E. Mchenry
Affiliation:
Department of Materials Science and Engineering
Sara A. Majetich
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213.
Get access

Abstract

FeCo nanoparticles are synthesized in a radio frequency (RF) plasma torch from metal powder precursors and simple gases. The first precursor consists of pre-alloyed FeCo powder; the second precursor is a mixture of elemental Fe and Co powders. A protective carbon coating on the particles is achieved by injection of acetylene gas into the plasma. X-ray diffraction reveals phase purity, low carbon concentration, and minimal oxidation. Analytical electron microscopy is used to examine the nanocomposite morphology and composition of individual nanoparticles. Both synthesis routes produce alloy product, but nanoparticles produced from pre-alloyed precursors exhibit smaller variations in Fe/Co ratio than particles produced from elemental powders.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roy, R. in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J., (Mater. Res. Soc. Proc. 286, Pittsburgh, PA, 1993) pp. 241250.Google Scholar
2. Brunsman, E. M., Scott, J. H., Majetich, S. A., Huang, M. Q., McHenry, M. E., J. Appl. Phys. 79, 5293 (1995).Google Scholar
3. Gallagher, K., Johnson, F., Kirkpatrick, E. M., Scott, J. H., Majetich, S., McHenry, M. E., IEEE Trans. Magn. 32, 4842 (1996).Google Scholar
4. Hayashi, T., Hirono, S., Tomita, M., Umemura, S., Nature 381, 772 (1996).Google Scholar
5. Majetich, S. A., Artman, J. O., McHenry, M. E., Nuhfer, N. T., and Staley, S. W., Phys. Rev. B 48, 16845 (1993).Google Scholar
6. Ladouceur, M., Lalande, G., Guay, D., Dodelet, J. P., Dignard-Bailey, L., Trudeau, M. L., Schulz, R., J. Electrochem. Soc. 140, 1974 (1993).Google Scholar
7. Chen, C.-W., Magnetism and Metallurgy of Soft Magnetic Materials (Dover, New York, 1986) p. 193.Google Scholar
8. Scott, J. H. and Majetich, S. A., Phys. Rev. B 52, 12564 (1995).Google Scholar
9. PDF cards 44–1433 and 22–1086, Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data (JCPDS-ICDD), Powder Diffraction File (PDF) database (1601 Park Lane, Swarthmore, PA 19081).Google Scholar
10. Kimoto, K. and Nishida, I., Jap. J. Appl. Phys. 6(9), 1047 (1967).Google Scholar
11. Boulos, M. I., Pure and Appl. Chem. 57, 1321 (1985).Google Scholar
12. Boulos, M. I., IEEE Trans. Plasma Science 19(6), 1078 (1991).Google Scholar