Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:38:31.088Z Has data issue: false hasContentIssue false

Thermal Diffusivity Measurement of Pure Te, (Hg1−x Cdx)1−yTey and (Hg1−xZnx)1−yTey

Published online by Cambridge University Press:  15 February 2011

Hossein Maleki
Affiliation:
Alabama Agricultural and Mechanical University Physics Dept. Normal, AL 35762
Lawrence R. Holland
Affiliation:
Alabama Agricultural and Mechanical University Physics Dept. Normal, AL 35762
Get access

Abstract

The thermal diffusivities of (Hg1−xCdx)1−yTey and (Hg1−xZnx)1−yTeywith 0.55 ≤ y ≤ 1.0 and 0.0125 ≤ x ≤ 0.05465 and of pure Te are measured over a wide temperature range by the laser flash technique. The diffusivity of near pseudobinary Hg1−xCdxTe solids decrease more rapidly with temperature approaching the melting point than pseudobinary solids previously reported. The solid diffusivity for x=0.02817 is 0.83 mm2/s at 371°C, decreasing to 0.22 mm2/s at 614°C. The diffusivity of Te rich (Hg1−xCdx)1−yTey melt increases with x and with temperature. The melt diffusivity for x=0.03934 is 0.91 mm2/s at 485°C, increasing to 4.93 mm2/s at 851°C. For Te rich (Hg1−xZnx)1−yTey melt with x=0.0125 and y=0.7944 there appears to be a minimum diffusivity of about 2.6 mm2/s near 700°C. The thermal diffusivity of pure Te solid is 0.97 mm2/s at 300°C and decreases to 0.64 mm2/s at 439°C. The melt diffusivity is 1.52 mm2/s at 486°C, increasing to 3.48 mm2/s at 584°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Holland, L. R., and Taylor, R. J. Vac. Sci. Technol. Al, No. 3, 1615 (1983).Google Scholar
2. Brice, J. C., Prog. Crystal Growth and Charact. 13, 39, (1988).CrossRefGoogle Scholar
3. Taylor, R. E. “J, Phys. Sci. Instrum. 13, 1193–99 (1980)CrossRefGoogle Scholar
4. Cape, J. A. and Lehman, G. W., J. Appl. Phys. 34, 1909 (1963)Google Scholar
5. Clark, L. M. and Taylor, R.E., J. Appl. Phys., 46, 714 (1975).Google Scholar
6. Cowan, R. D., J. Appl. Phys., 34, 926 (1963)CrossRefGoogle Scholar
7. Holland, L. R., , R, Harris, P. and smith, R. E., Rev. Sci. Inst., 54, 993(1993)CrossRefGoogle Scholar
8. Taylor, R. E. and Maglic, K. D., Thermophysical Prop. Measurement 1, edited by Maglic, K. D. (Plenum Pulishing Co.) pp. 305, (1984).Google Scholar
9. Taylor, R. E. and Clark, L. M., High Temp. High Press. 6, 65 (1974)Google Scholar
10. Regel, A.R., Investigations of Electronic Conductivity of Liquids. Doctoral Dissertation, Leningrad (1956).Google Scholar
11. Bhandari, C. M. and Rowe, D.M., Thermal Conductivity in Semiconductors, (Johan Wily & Sons, New York, 1988).Google Scholar
12. Su, Ching-Hua, J. Crystal Growth, 91 20 (1988).CrossRefGoogle Scholar
13. Chandra, D. and Holland, L. R., J. Vac. Sci. Technol. A1 (3), July-Sept. (1983).Google Scholar
14. Wolf, W. L. and Zisses, G. J., The Infrared Hand-book(Office of Naval Research, Dept. of Navy, Washington, DC (1985).Google Scholar
15. Allieve, S. A., Gashive, T. G., Fiz, R. I. Salim-Zade. Tverl. Tela USSR, Leningrad, 31(2), 239 (1992).Google Scholar
16. Mendibaev, K. R., Vidravich, V. N. and Sokolov, M. A.,Izv, Akad. Nauk USSR, Neorg., Mater., 22 (11), 1914 (1992).Google Scholar