Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T19:26:34.646Z Has data issue: false hasContentIssue false

Thermal Conductivity of Single-Crystal and Sintered RBa2Cu3O7 at low Temperatures

Published online by Cambridge University Press:  28 February 2011

J. E. Graebner
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. F. Schneemeyer
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. J. Cava
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. V. Waszczak
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
E. A. Rietman
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The thermal conductivity k of micro-twinned single crystals of YBa2Cu3O7 and HoBa2Cu3O7 and a sintered sample of YBa2Cu3O7 has been measured for temperatures 0.03<T<5K. For the single crystals, k is small and varies as T1.8-1.9 This behavior resembles k for glassy insulators except for the lack of a plateau above IK. It is concluded that the thermal carriers are phonons with their mean free path limited by resonant scattering from tunneling entities, as in glasses. Suggestions for the location of tunneling systems are given. For the sinter, k is still smaller but does not follow a power law T-dependence. It is similar to other sintered ceramics with the same particle size, where the phonon mean free path is dominated by Rayleigh scattering from the particles. This strong scattering from the microstructure presumably masks the scattering from TS within each particle.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schneemeyer, L. F., Waszczak, J. V., Siegrist, T., van Dover, R. B., Rupp, L. W., Batlogg, B., Cava, R. J., and Murphy, D. W. (to appear).Google Scholar
2. Cava, R. J., Batlogg, B., van Dover, R. V., Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Rietman, E. A., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).Google Scholar
3. Freeman, J. J., Friedmann, T. A., Ginsberg, D. M., Chen, J., and Zangvil, A. (to appear).Google Scholar
4. Amorphous Solids ed. Phillips, W. A. (Springer, Berlin, 1981).Google Scholar
5. Golding, B., Birge, N. O., Haemmerle, W. H., Cava, R. J., and Rietman, E., (to appear).Google Scholar
6. Tait, R. H., Ph.D. thesis, Cornell University, 1975.Google Scholar
7. Graebner, J. E. and Golding, B., Phys. Rev. B 34, 5788 (1986).Google Scholar
8. Graebner, J. E., Golding, B., and Allen, L. C, Phys. Rev. B 34, 5696 (1986).Google Scholar
9. Bayot, V., Delannay, F., Dewitte, C., Michenaud, J-P., Minet, J-P., and Piraux, L. (to appear).Google Scholar
10. Dunlap, B. D., Slaski, M., Winks, D. O., Soderholm, L., Beno, M., Zhang, K., Segre, C., Crabtree, G. W., Kwok, W. K., Malik, S. K., Schuller, I. K., Jorgensen, J. D., and Sungaila, Z., J. Magn. Magn. Mater. 68, L139 (1987).Google Scholar