Published online by Cambridge University Press: 01 February 2011
A novel transient technique is developed to measure the thermal diffusivity of one-dimensional microscale wires. In this technique, the thin wire is suspended over two copper electrodes. Upon fast (nanosecond) pulsed laser irradiation, the wire's temperature will quickly increase to a high level and then decrease gradually. Such temperature decay can be used to determine sample's thermal diffusivity. To probe this temperature evolution, a dc current is fed through the wire to sensor its voltage variation, from which the thermal diffusivity can be extracted. A 25.4-μ;m thin Pt wire is characterized to verify this technique. Sound agreement is obtained between the measured data and reference value. Applying this pulsed laser-assisted thermal relaxation technique, the thermal diffusivity of multi-wall carbon nanotube bundles and microscale carbon fibers is measured. Detailed analysis is conducted to study the effect of the wire embedded in the paste/base on the final measurement result.