Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:36:19.392Z Has data issue: false hasContentIssue false

Thermal Characterization of Micro/Nanoscale Wires/Tubes Using Pulsed Laser-assisted Thermal Relaxation

Published online by Cambridge University Press:  01 February 2011

Jiaqi Guo
Affiliation:
[email protected], University of Nebraska-Lincoln, Mechanical Engineering, 1326 D St. Apt.2, Lincoln, NE, 68588, United States
Xinwei Wang
Affiliation:
[email protected], University of Nebraska-Lincoln, Mechanical Engineering, Lincoln, NE, 68588-0656, United States
David Geohegan
Affiliation:
[email protected], Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6056, Oak Ridge, TN, 37831-6056, United States
Gyula Eres
Affiliation:
[email protected], Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6056, Oak Ridge, TN, 37831-6056, United States
Cecile Vincent
Affiliation:
[email protected], University of Bordeaux I, 87 avenue A. Schweitzer, Pessac, 33600, France
Get access

Abstract

A novel transient technique is developed to measure the thermal diffusivity of one-dimensional microscale wires. In this technique, the thin wire is suspended over two copper electrodes. Upon fast (nanosecond) pulsed laser irradiation, the wire's temperature will quickly increase to a high level and then decrease gradually. Such temperature decay can be used to determine sample's thermal diffusivity. To probe this temperature evolution, a dc current is fed through the wire to sensor its voltage variation, from which the thermal diffusivity can be extracted. A 25.4-μ;m thin Pt wire is characterized to verify this technique. Sound agreement is obtained between the measured data and reference value. Applying this pulsed laser-assisted thermal relaxation technique, the thermal diffusivity of multi-wall carbon nanotube bundles and microscale carbon fibers is measured. Detailed analysis is conducted to study the effect of the wire embedded in the paste/base on the final measurement result.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, L., Yi, W., and Zhang, D. L., Rev. Sci. Instrum. 72, 2996 (2001).Google Scholar
2. Choi, T. Y., Poulikakos, D., Tharian, J., and Sennhauser, U., Nano Lett. 6, 1589 (2006).Google Scholar
3. Hou, J., Wang, X., Vellelacheruvu, P., Guo, J., Liu, C., and Cheng, H. M., J. Appl. Phys. 100, 124314 (2006).Google Scholar
4. Kim, P., Shi, L., Majumdar, A., and McEuen, P. L., Phys. Rev. Lett. 87, 215502 (2001).Google Scholar
5. Shi, L., Hao, Q., Yu, C., Mingo, N., Kong, X., and Wang, Z. L., Appl. Phys. Lett., 84, 2638 (2004).Google Scholar
6. Hou, J., Wang, X., and Guo, J., J. Phys. D: Appl. Phys. 39, 3362 (2006).Google Scholar
7. Hou, J., Wang, X., Liu, C., and Cheng, H., Appl. Phys. Lett. 88, 181910 (2006).Google Scholar
8. Hou, J., Wang, X., and Zhang, L., Appl. Phys. Lett. 89, 152504 (2006).Google Scholar
9. Guo, J., Wang, X., and Wang, T., J. Appl. Phys. 101, 063537 (2007).Google Scholar
10. Guo, J., Wang, X., Zhang, L., and Wang, T., Appl. Phys. A 89, 153 (2007).Google Scholar
11. Wang, T., Wang, X., Guo, J., Luo, Z., and Cen, K., Appl. Phys. A 87, 599 (2007).Google Scholar
12. Beck, J. V., Cole, K. D., Haji-Sheikh, A., and Litkouhi, B., in Heat Conduction Using Green's Functions, (Hemisphere Publishing Corp., New York, 1992), pp. 482.Google Scholar
13. Incropera, F. and Dewitt, D., in Fundamentals of Heat and Mass Transfer, 5th ed. (John Wiley & Sons Inc., New York, 2002), Appendix A.Google Scholar
14. Weast, R., Handbook of chemistry and physics, 64th ed. (CRC Press Inc., Florida, 1983-1984), pp. F125.Google Scholar
15. SPI Supplies (http://www.2spi.com/catalog/spec_prep/cured_silver_film.html).Google Scholar
16. Electron Microscopy Sciences http://www.emsdiasum.com/microscopy/products/sem/colloidal.aspx).Google Scholar
17. Incropera, F. and Dewitt, D., in Fundamentals of Heat and Mass Transfer, 5th ed. (John Wiley & Sons Inc., New York, 2002), pp. 133.Google Scholar