Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:50:39.088Z Has data issue: false hasContentIssue false

Thermal Annealing Study of High-TC Ybacuo and Bisrcacuo Superconducting Wires

Published online by Cambridge University Press:  28 February 2011

Y. D. Yao
Affiliation:
Institute of Physics, Academia Sinica, Taipei, Taiwan, R.O.C.
J. W. Chen
Affiliation:
Department of Physics, National Taiwan University, Taipei, Taiwan, R.O.C.
Y. Y. Chen
Affiliation:
Institute of Physics, Academia Sinica, Taipei, Taiwan, R.O.C.
W. S. Pern
Affiliation:
Institute of Physics, Academia Sinica, Taipei, Taiwan, R.O.C.
H. A. Yong
Affiliation:
Department of Physics, National Taiwan University, Taipei, Taiwan, R.O.C.
I. N. Lin
Affiliation:
Materials R&D Center, Chung Shan Institute of Science and Technology, Lungtan, Taoyuan, Taiwan, R.O.C.
P. C. Yao
Affiliation:
Materials R&D Center, Chung Shan Institute of Science and Technology, Lungtan, Taoyuan, Taiwan, R.O.C.
S. J. Yang
Affiliation:
Materials R&D Center, Chung Shan Institute of Science and Technology, Lungtan, Taoyuan, Taiwan, R.O.C.
S. E. Hsu
Affiliation:
Materials R&D Center, Chung Shan Institute of Science and Technology, Lungtan, Taoyuan, Taiwan, R.O.C.
Get access

Abstract

High‐T YBaCuO and BiSrCaCuO Superconducting wires have been fabricated by powder metallurgy technique. Copper and silver tubes were used as the external jackets. Thermal annealing treatments for all the wire‐type samples were performed between 773 K and 1223 K. Both electrical and magnetization studies show that the superconducting properties can be improved after properly thermal annealing these samples with silver jacket. Our experimental results show that proper thermal annealing treatment can enhance the intragrain critical current density more than 100 times; however, the intergrain critical current density improves only a few times.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Haung, J., Wang, Y. Q. and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
2 Enomoto, Y., Murakami, T., Suzuki, M. and Moriwaki, K., Jpn. J. Appl. Phys. 26, L1248 (1987).Google Scholar
3 Kohno, O., Ikeno, Y., Sadakata, N., Sugimoto, M. and Nakagawa, M., Jpn. J. Appl. Phys. 26, L759 (1987).Google Scholar
4 Jin, S., Sherwood, R. C., VanDover, R. B., Tiefel, T. H. and Johnson, D. W. Jr., Appl. Phys. Lett., 51, 203 (1987).Google Scholar
5 Yamada, Y., Fukushima, N., Nakayama, S., Yoshino, H. and Murase, S., Jpn. J. Appl. Phys. 26, L865 (1987).Google Scholar
6 Shi, D. and Goretta, K. C., Mat. Lett. 7, 428 (1989).Google Scholar
7 Sen, S., Gann, I. G., Chen, C. H. and Stefanescu, D. M., Appl. Phys. Lett. 54, 766 (1989).Google Scholar
8 Sekine, H., Ogawa, K., Inoue, K., Maeda, H. and Numata, K., Jpn. J. Appl. Phys. 28, 1185 (1989).Google Scholar
9 Akihama, R., Murphy, R. J. and Foner, S., Appl. Phys. Lett. 37, 1107 (1980)Google Scholar