Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T21:26:00.276Z Has data issue: false hasContentIssue false

Thermal and Photon-Induced Chemistry of Adsorbed Cadmium and Tellurium Alkyls

Published online by Cambridge University Press:  26 February 2011

C.D. Stinespring
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
A. Freedman
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
Get access

Abstract

Experimental studies of the thermal and photon-induced surface chemistry of two organometallic molecules, dimethyl cadmium and dimethyl tellurium, are reported for a variety of surfaces including Au, GaAs, Si, and SiO£. These studies followed ultrahigh vacuum compatible procedures and used x-ray photoelectron spectroscopy to characterize the chemical state and coverage of the adspecies formed at 295 K. The results showed considerable diversity in the thermal surface chemistry of the systems investigated. Depending on the substrate, physisorption and dissociative chemisorption to yield monomethyl and metal adspecies were observed. Irradiation of the physisorbed adspecies with 193 nm UV photons led to single photon photodecomposition and limited photodesorption. Similar irradiation of the monomethyl-adspecies caused only limited photodesorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ludowise, M.J., J. Appl. Phys. 58, R31 (1985).Google Scholar
2 Dupuis, R.D., Science 226 623 (1984).Google Scholar
3 Lee, P.D., McKenna, D., Kapur, D., and Jensen, K.F., J. Crystal Growth 77, 120 (1986).Google Scholar
4 Erlich, D.J. and Osgood, R.M. Jr., Chem. Phys. Lett. 79, 381 (1981).Google Scholar
5 Donnelly, V.M., McCrary, V.R., Appelbaum, A., Brasen, D., and Lowe, W.P., J. Appl. Phys. 61, 1410 (1987).Google Scholar
6 Krchnavek, R.R., Gilgen, H.H., Chen, J.C., Shaw, P.S., Licata, T.J., and Osgood, R.M., J. Vac. Sei. Technol. B5, 20 (1987).Google Scholar
7 Tokumitsu, E., Kurou, Y., Kanogai, M., and Takahashi, K., J. Appl. Phys. 55, 3163 (1984).Google Scholar
8 Nishizawa, J., Abe, H., and Kurabayashi, T., J. Electrochem. Soc. 132, 1199 (1985) and J. Electrochem. Soc. 122, 1939 (1985).Google Scholar
9 Nishizawa, J., Kurabayashi, K.T., Abe, H., and Sakurai, N., J. Vac. Sei. Technol. A4, 706 (1986).Google Scholar
10 Stinespring, C.D. and Freedman, A., Chem. Phys. Lett., to be published.Google Scholar
11 Stinespring, C.D. and Freedman, A., to bè published.Google Scholar
12 Higashi, G.S., Rothberg, L.J., and Fleming, C.C., Chem. Phys. Lett. 115, 167 (1985).Google Scholar
13 Bourdon, E.D.B., Cowin, J.P., Harrison, I., Polanyi, J.C., Segner, J., Stanners, C.D., and Young, P.A., J. Phys. Chem. 88, 6100 (1984).Google Scholar
14 Tabares, F.L., Marsh, E.P., Bach, G.A., and Cowin, J.P., J. Chem. Phys. 86, 738 (1987).Google Scholar
15 M. Henzler, , Surface Sei. 26, 109 (1973).Google Scholar
16 Kolodziejski, L.A., Gunshor, R.L., Otsuka, N., Datta, S., Becker, W.M., and Nurmikko, A.V., IEEE, J. Quant. Electron. QE–22, 1666 (1986).Google Scholar
17 Chen, C.J. and Osgood, R.M., J. Chem. Phys. 81, 327 (1984).Google Scholar
18 Chu, J.O., Flynn, G.W., Chen, C.J., and Osgood, R.M. Jr., Chem. Phys. Lett. 119, 206 (1985).Google Scholar