Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:19:51.394Z Has data issue: false hasContentIssue false

Theory of the Sulphur-Passivated InP(001) Surface

Published online by Cambridge University Press:  10 February 2011

Laurent J. Lewis
Affiliation:
Département de physique et GCM, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7
Chandré Dharma-Wardana
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada Ottawa, Ontario, Canada K1A 0R6
Get access

Abstract

We present a detailed and comprenhensive theoretical investigation of the sulphur-passivated (001) surface of InP. First, the ground-state structure is determined using density-functional methods, including full relaxation of the surface. The lowest-energy structure at 0 K is a striking (2 × 2) reconstruction with the S atoms displaced from the bridge sites to form short and long dimers, belonging to two distinct sublayers. This surface structure is used to calculate the backscattering Raman spectrum; the two peaks arising from surface-layer vibrations predicted by our calculations are observed. Next, our first-principles calculations are extended to the study of a number of other stable states of the surface that can arise upon annealing. For this purpose, we construct and relax several higher-energy states of the surface, and calculate the corresponding core-level photoemission spectra. A remarkable sequence of structures is found to unfold from the fully S-covered ground state as they become energetically accessible. The surface S atoms exchange with bulk P atoms, forming new (and strong) S-P bonds while dissociating pre-existing S–S dimers. The predicted core-level spectra are found to be entirely consistent with the experimental measurements; our calculations indicate that the annealed (at about 700 K) surface is a (2 × 2) structure containing two S and two P atoms per unit cell. Finally, we have used the predicted stable surface structures to calculate the photoemission and inverse photoemission spectra. They are found to agree well with experiment if the surface is assumed to consist of a mixture of the above ground-state and annealed structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Science, “Is the future here for GaAs?”, 262, 1819 (1993).Google Scholar
2. Coutts, T.J. and Naseem, S., Appl. Phys. Lett. 46, 164 (1985).Google Scholar
3. Lau, W.M., Jin, S., Wu, X.W., and Ingrey, S., J. Vac. Sci, Technol. A 9, 994 (1991); M. S. Carpenter et al., Appl. Phys. Lett. 52, 2157 (1988).Google Scholar
4. Tao, Y., Yelon, A., Sacher, E., Lu, Z.H., and Graham, M.J., Appl. Phys. Lett. 60, 2669 (1992).Google Scholar
5. Lu, Z.H., Graham, M.J., Feng, X.H., and Yang, B.X., Appl. Phys. Lett. 60, 2773 (1992)Google Scholar
Lu, Z. H. et al., Appl. Phys. Lett. 60, 2932 (1993)Google Scholar
6. Jin, J.-M., Dharma-wardana, M.W.C., Lockwood, D.J., Aers, G.C., Lu, Z.H., and Lewis, L.J., Phys. Rev. Lett. 75, 878 (1995).Google Scholar
7. Teter, M.P., Payne, M.C., and Allan, D.C., Phys. Rev. B 40, 12255 (1989).Google Scholar
8. See e.g. Oigawa, H., Fan, J., Nannichi, Y., Ando, K., Saiki, K., and Koma, A., Jpn. J. Appl. Phys. 28, L 340 (1989). T. Ohno, Surf. Sci. 255, 229 (1991). M. Tanimoto, H. Yokoyama, M. Shinohara, and N. Inoue, Jpn. J. Appl. Phys. 33, L 279 (1994). M. Sugiyama et al., Phys. Rev. B 50, 4905 (1994).Google Scholar
9. See Synchrotron Radiation Research: Advances in Surface Science, edited by Z., Bachrach (Plenum Press, New York, 1990), and J. Himpsel et al.., in Photoemission and Absorption Spectroscopy of Solids and Surfaces with Synchrotron Radiation, edited by M. Campagna and R. Rosei (North-Holland, Amsterdam,1990), p203; also, E. L. Bullock et al.., Phys. Rev. Lett, 74,Google Scholar
10. Kleinman, L. and Bylander, D.M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
11. Ceperley, D.M. and Alder, B.J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
12. Jin, J.-M. and Lewis, L.J., Phys. Rev. B 49, 2201 (1994)Google Scholar
Jin, J.-M., Lewis, L.J., Milman, V., Stich, I., and Payne, M.C., Phys. Rev. B 48, 11 465 (1993).Google Scholar
13. Jin, J.-M. and Lewis, L.J., Surf. Sci. 325, 251 (1995).Google Scholar
14. Tian, Z., M.W.C. Dharma-wardana, Lu, Z.H., Cao, A., and Lewis, L.J., Phys. Rev. B 55, 5376 (1997).Google Scholar
15. Brice, J.C., in Properties of Indium Phosphide (INSPEC, London, 1991) p. 5, and references cited therein.Google Scholar
16. Methfessel, M., Phys. Rev. B 38,1537 (1988); M. Methfessel, D. Henig, and M. Scheffler, Phys. Rev. B 46, 4816 (1992), and references therein.Google Scholar
17. Slater, J.C., The self-consistent field for molecules and solids, Vol IV, (McGraw-Hill, New York) 1974; R.M. Dreizler and E.K.U. Gross, Density Functional Theory, section 4.4, (Springer-Verlag, New York) 1990.Google Scholar
18. Mitchell, C.E.J., Hill, I.G., McLean, A.B. and Lu, Z.H., Progress in Surface Science, 50, 325 (1995).Google Scholar
19. Dharma-wardana, M.W.C., Tian, Z., Lu, Z.H., and Lewis, L.J., Phys. Rev. B 56, 10526 (1997).Google Scholar
20. Qin, X.R., Lu, Z.H., Shapter, J.G., Coatsworth, L.L., Griffiths, K., and Norton, P.R., J. Vac. Sci. Tech. A 16, 163 (1998).Google Scholar
21. Kunc, K., in Electronic Structure, Dynamics, and Quantum Structural Properties of Condensed Matter, ed. by J.T., Devreese and P. Van, Camp (Plenum, New York, 1985) p. 227. K. Kunc and R.M. Martin, Phys. Rev. Lett. 48, 406 (1982).Google Scholar
22. Dharma-wardana, M.W.C., Aers, G.C., Lockwood, D.J., and Baribeau, J.-M., Phys. Rev. B 41 5319 (1990); Light Scattering in Semiconductor Structures and Superlattices, Ed. D.J. Lockwood and J.F. Young (Plenum, New York, 1991), p. 81.Google Scholar
23. Koelling, D.D. and Harmon, B.N., J. Phys. C (UK) 10, 3107 (1977)Google Scholar
24. Lu, Z.H. and R. Cao (unpublished).Google Scholar
25. A. B. McLean (private communication)Google Scholar