Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:18:41.820Z Has data issue: false hasContentIssue false

Theory of Surface Effects in Binary Alloys

Published online by Cambridge University Press:  15 February 2011

J.L. MoráN-LóPez
Affiliation:
Departamento de Física, Centro de Investigación y de Estudios Avanzados del I.P.N., Apdo. Postal 14–740, 07000 México D.F.
L.M. Falicov
Affiliation:
Department of Physics, University of California, Berkeley, California 94720
Get access

Abstract

The chemical, ordering and magnetic properties of binary alloys at the surface are examined in terms of a model of pairwise interacting atoms. Both the case of segregating alloys and the case of alloys which form intermetallic compounds are examined. Some surprising results about surface concentration and surface ordering are found. Applications to a number of systems, including ferromagnets, are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sundaram, V.S., Farrel, B., Alben, R.S. and Robertson, W.D., Phys. Rev. Lett. 31, 1136 (1973).Google Scholar
2. Sachtler, W.M.H. and Dorgelo, G.J.H., J. Catal. 4, 654 (1965).Google Scholar
3. Riviere, J.C., Contemp. Phys. 14, 513 (1973).CrossRefGoogle Scholar
4. Williams, F.L. and Boudart, M., J. Catal. 30, 438 (1973).CrossRefGoogle Scholar
5. Wood, B.J. and Wise, H., Surf. Sci. 52, 131 (1975).Google Scholar
6. Overburg, S.H. and Somorjai, G.A., Surf. Sci. 55, 209 (1976).Google Scholar
7. Sinfelt, J.H., Prog. Solid State Chem. 10, 55 (1975).Google Scholar
8. Ponec, V., Catal. Rev. Sci. Eng. 11, 41 (1975).CrossRefGoogle Scholar
9. Fowler, R.H. and Guggenheim, E.A., Statistical Thermodynamics (Oxford University, London, 1939).Google Scholar
10. Roberts, B.W., Acta Metall. 2, 597 (1954).CrossRefGoogle Scholar
11. Kikuchi, R. and Sato, H., Acta. Metall. 22, 1099 (1974).Google Scholar
12. Kikuchi, R., Phys. Rev. 81, 988 (1951).Google Scholar
13. Morán-López, J.L. and Bennemann, K.H., Phys. Rev. B 15, 4769 (1977).Google Scholar
14. van Santen, R.A. and Sachtler, W.M.H., J. Catal. 33, 202 (1974).Google Scholar
15. Jabtoński, A., Adv. Colloid. Interface Sci. 8, 2542 (1978).Google Scholar
16. Morán-López, J.L. and Falicov, L.M., Phys. Rev. B 18, 2542 (1978).Google Scholar
17. Morán-López, J.L. and Falicov, L.M., Phys. Rev. B 18, 2549 (1978).Google Scholar
18. Morán-López, J.L. and Falicov, L.M., Surface Sci. 79, 109 (1979).Google Scholar
19. Morán-López, J.L. and Falicov, L.M., Phys. Rev. B 19, 1470 (1979).Google Scholar
20. Morán-López, J.L. and Falicov, L.M., Phys. Rev. B 20, 3900 (1979).CrossRefGoogle Scholar
21. It should be noted that the minimization procedure should be conducted by differentiating F with respect to all η and σ parameters, considered as independent variables, but keeping all xn as constants. Once all the order parameters are expressed in terms of xn and replaced in the free energy expression, then the constraint conditions (2.12) should be applied to determine the equilibrium values of xn and all order parameters.Google Scholar
22. Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1958).Google Scholar
23. Williams, F.L. and Nason, D., Surf. Sci. 43, 377 (1974).Google Scholar
24. Kumar, D., Mookerjee, A. and Kumar, V., J. Phys. F. 6, 725 (1976).CrossRefGoogle Scholar
25. Nakamura, M. and Wise, H. (unpublished).Google Scholar
26. Sinfelt, J.H., Carter, J.L. and Yates, D.J.C., J. Catal. 24, 283 (1972).Google Scholar
27. Sinfelt, J.H., Science 195, 641 (1977).Google Scholar
28. Cable, J.W., Phys. Rev. B 15, 3477 (1977).Google Scholar
29. Vrijen, J. and Radelaar, S., Phys. Rev. B 17, 409 (1978).CrossRefGoogle Scholar
30. Medina, R.A. and Cable, J.W., Phys. Rev. B 15, 1539 (1977).Google Scholar
31. Vermilyea, D.A., Phys. Today (Sept. 1976), p. 23.Google Scholar
32. Hultgren, R., Orr, R., Anderson, P. and Kelley, K., Selected Values of Thermodynamic Properties of Metals and Alloys (Wiley, New York, 1963).Google Scholar
33. Swalin, R.A., Thermodynamics of Solids (Wiley, New York, 1972).Google Scholar
34. Helms, C.R., Surf. Sci. 69, 689 (1977).Google Scholar
35. van Santen, R.A. and Sachtler, W.M.H., J. Catal. 33, 202 (1974).Google Scholar
36. Mozer, B., Keating, D.T. and Moss, S.C., Phys. Rev. 175, 868 (1968).Google Scholar
37. Poneg, V. in Electronic Structure and Reactivity of Metal Surfaces, edited by Derouane, F.G. and Lucas, A.A. (Plenum, New York, 1976).Google Scholar
38. Cahn, J.W., J. Chem. Phys. 66, 3667 (1977).CrossRefGoogle Scholar
39. Lindau, I., Chye, P.W., Garner, C.M., Pianetta, P., Su, C.Y. and Spicer, W.E. (unpublished).Google Scholar
40. Sinfelt, J.H., J. Catal. 29, 308 (1973).Google Scholar
41. Oyedele, J.A. and Collins, M.F., Phys. Rev. B 16, 3208 (1977).CrossRefGoogle Scholar
42. Williams, F.L. and Nason, D., Surf. Sci 45, 377 (1974).Google Scholar
43. Morηn-López, J.L. and Wise, H., Applications Surface Sci. 4, 93 (1980).Google Scholar
44. Billard, L., Villemain, P. and Chamberod, A., J. Phys. C 11, 2815 (1978).Google Scholar