No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
We identify via thermodynamic energy minimization the role of subsurface strain (caused by surface reconstruction and dimerization) in the ordering of Ga0.51n0.5P alloys. Depending on the growth conditions, the alloy surfaces can have either β2(2×4), c(4×4) or c(8×6) reconstructions, with characteristic 2×1, 1×2 and 2×3 RHEED patterns. We show that (i) the 1×2 reconstruction will lead to a CUPtA surface ordering, (ii) a 2×1 reconstruction will lead to a CuPtB ordering, (iii) a 2×3 reconstruction will lead to a 3-period ordering, and (iv) single (double) bilayer steps are stable at low (high) anion chemical potential. These results are in good agreement with recent experimental observations.