Published online by Cambridge University Press: 21 February 2011
A comprehensive time independent theory of the solid electrolyte(SE)–metal electrode interface is presented, using the assumption that cations are the only mobile charge carrier in the electrolyte. The temperature and the dc current across the SE are the only free parameters for the solutions along with three intrinsic parameters which depend on the properties of the particular system. The phenomenological model of the interface double layer is based on the Gouy–Chapman–Stern model.
The numerical solutions of the theory for porous tungstenzeolite system enables us to predict most of the properties in the SE system such as;the current–overpotential characteristics, the capacitances of the double layer, concentration profile in the diffusion layer, the potential profile across the interface, electrochemical exchange current, and the potential of zero charge(PZC) etc. An experimental technique to measure the PZC of SE systems has been also proposed.