Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:51:30.627Z Has data issue: false hasContentIssue false

Theory of Intrinsic Defects in a-SiO2

Published online by Cambridge University Press:  25 February 2011

Arthur H. Edwards*
Affiliation:
U. S. Army Electronics Technology and Devices Lab, Ft. Monmouth, N. J. 07703
Get access

Abstract

In this paper we discuss recent advances in the theory of intrinsic defects in amorphous SiO2. We pay particular attention to the E' centers, and to the oxygen-related hole traps.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Edwards, A. H. and Fowler, W. B. in Structure and Bonding in Noncrystalline Solids, edited by Revesz, A. G. and Walrafen, G. (in press).Google Scholar
2. Griscom, D. L., J. Non-Cryst. Solids 24, 155 (1977).CrossRefGoogle Scholar
3. Schneider, P. M. and Fowler, W. B., Phys. Rev. Lett. 36, 425 (1976): P. M. Schneider and W. B. Fowler, Phys. Rev. B18, 7122 (1978).Google Scholar
4. Calabrese, E. and Fowler, W. B., Phys. Rev. B18, 2888 (1978).CrossRefGoogle Scholar
5. Fowler, W. B., Schneider, P. M. and Calabrese, E. in The Physics of SiO2 and its Interfaces, edited by Pantelides, S. T. (Pergamon Press, New York, 1978), p. 70.Google Scholar
6. Batra, I. P., in The Physics of SiO2 and its Interfaces, edited by Pantelides, S. T. (Pergamon Press, New York, 1978). p. 65.Google Scholar
7. Schluter, M. and Chelikowsky, J. R., Solid State Commun. 21, 382 (1977); M. Schluter and J. R. Chelikowsky, Phys. Rev. B15, 1020 (1977).Google Scholar
8. There is a polymorph of SiO2, stichovite, whose electronic structure is quite dissimilar to the rest. However, in this case the oxygen atoms are three fold coordinated and the silicon atoms are six fold coordinated. For a theoretical treatment of this system see Rudra, J. K., and Fowler, W. B., Phys. Rev. B 28, 1061 (1983).CrossRefGoogle Scholar
9. Revesz, A. G. and Gibbs, G. V., in The Physics Of SiO2 and its Interfaces, edited by Pantelides, S. T. (Pergamon Press, New York, 1978), p. 92.Google Scholar
10. Edwards, A. H. and Fowler, W. B., J. Phys. Chem. Solids 46, 841 (1985).Google Scholar
11. Meir, H. and Ha, T., J. Phys. Chem. Minerals 6, 37 (1980).CrossRefGoogle Scholar
12. Bell, R. J. and Dean, P., Phil. Hag. 25, 1381 (1972).Google Scholar
13. Phillips, J. C., in Solid State Physics, edited by Seitz, F. and Turnbull, D., (Academic Press, New York, 1982) 37, 93.Google Scholar
14. Galeener, F. L. and Thorpe, M. F., Phys. Rev B28, 5802 (1983).Google Scholar
15. Geissberger, A. E. and Galeener, F. L., Phys. Rev. B28, 3266 (1983).Google Scholar
16. The concept of deep levels in semiconductors has been considered in great detail by Hjalmarson and co-workers (see, for example, Hjalmarson, H. P., Vogi, P., Wolford, D. J. and Dow, J. D., Phys. Rev. Lett. 44, 810 (1980)). They demonstrated that a deep level may lie close to the conduction or valence band edge but that its singular feature is that it as not tied to either band edge. This property is a reflection of strong localization.CrossRefGoogle Scholar
17. Bennett, A. J. and Roth, L. M., J. Phys. Chem. Solids 32, 1251 (1971).Google Scholar
18. Herman, F., Henderson, D. J. and Kasowski, R. V., in The Physics of MOS Insulators, edited by Lucovsky, G., Pantelides, S. T. and Galeener, F. L. (Pergamon Press, New York, 1980), p. 107.Google Scholar
19. O'Reilly, E. P. and Robertson, J., Phys. Rev. B27, 3780 (1983).CrossRefGoogle Scholar
20. Deak, P. and Giber, J., Phys. Lett. 88A, 237 (1982); P. Deak and J. Giber Lecture Notes in Phys. 175 (1983).Google Scholar
21. Hermann, F. and Kasowski, R. V., Phys. Rev. B17, 672 (1978).Google Scholar
22. Bene, J. Del and Jaffe, H. H., J. Chem. Phys. 44, 3289 (1968).Google Scholar
23. Grafe, T. and Strehlow, R., Phys. Stat. Sol. B123. 663 (1984).Google Scholar
24. Bethkenhagen, V. and Hubner, K., Phys. Stat. Sol. b126, K71 (1984); V. Bethkenhagen and K. Hubner, Phys. Stat. Sol. b125, K79 (1984).Google Scholar
25. Isoya, J. and Weil, J. A., J. Chem. Phys. 74, 5436 (1981).Google Scholar
26. Rudra, J. K. and Fowler, W. B., Phys. Rev. Lett. (in press).Google Scholar
27. Gobsch, G., Haberlandt, H., Weckner, H. J., and Reinhold, J., Phys. Stat. Sol b90, 309 (1978); H. Haberlandt, Phys. Stat. Sol. b110, 531 (1982).Google Scholar
28. Yip, K. L. and Fowler, W. B., Phys. rev. B11, 2327 (1975).Google Scholar
29. Bingham, R. C., Dewar, M. J. S. and Lo, D. H., J. Am. Chem. Soc. 97, 1285 (1975).CrossRefGoogle Scholar
30. Bishof, P. J., J. Am. Chem. Soc. 98, 6844 (1976).Google Scholar
31. Weeks, R. A., J. Appl. Phys. 27, 1376 (1956).Google Scholar
32. Silsbee, R. H., J. Appl. Phys.32, 1459 (1961).CrossRefGoogle Scholar
33. Jahn, H. A. and Teller, E., Proc. Roy. Soc. London A161, 220 (1937).Google Scholar
34. Ham, F. S., Phys. Rev. 88, 2926 (1973).Google Scholar
35. Feigl, F. J., Fowler, W. B., and Yip, K. L., Sol. State Comm. 14, 225 (1974).Google Scholar
36. Jani, H. G., Bossoli, R. B., and Halliburton, L. E., Phys. Rev. B27, 2285 (1983).CrossRefGoogle Scholar
37. Griscom, D. L., Phys. Rev B22, 4192 (1980).Google Scholar
38. Rudra, J. K. and Fowler, W. B. (unpublished).Google Scholar
39. Kastner, M., Adler, D., and Fritzche, H., Phys. Rev. Lett. 37, 1504 (1976).Google Scholar
40. Lucovsky, G., Phil. Hag. 39, 513 (1979); G. Lucovsky, Phil. Hag. 39, 531.Google Scholar
41. Griscom, O. L., Friebele, E. J., and Sigel, G. H. Jr., Sol. State Commum. 15, 479 (1974).Google Scholar
42. Recently, Griscom (Griscom, D. L., Nuc. Instr. and Meth. in Phys. Res. B1, 481 (1984)) has shown that there are three spectrocsopically different E’ centers, labelled E’, formed by low temperature X-rays in dry silica, E’β formed under the same conditions in wet silica and E’ formed by room temperature gamma irradiation in either material. In this paper, we will concentrate on E’, as this is the only E’ center that has received serious theoretical study.CrossRefGoogle Scholar
43. Griscom, D. L. and Fowler, W. B. in The Physics of MOS Insulators, edited by Lucovsky, G., Pantelides, S. T. and Galeener, F. L. (Pergamon Press, New York, 1980), p. 97.Google Scholar
44. We note that these energy levels are only Hartree Fock parameters. Approximate electrical levels have also been calculated using the procedure described in reference 45. The electrical levels are also in the lower half of the band gap.Google Scholar
45. Edwards, A. H. and Fowler, W. B., Phys. Rev. B26. 6649 (1982).Google Scholar
46. Koopmans, T. A., Physica 1, 104 (1933).CrossRefGoogle Scholar
47. Firsht, D., Pickup, B. T., and McWeeney, R.. Chem. Phys. 29, 67 (1978).Google Scholar
48. Edwards, A. H. and Fowler, W. B., Mat. Res. Soc. Proc. 46, 533 (1985).Google Scholar
49. Halliburton, L. E., Perlson, B. D., Weeks, R. A., Weil, J. A., and Wintersgill, M. C., Sol. State Commun. 30, 575 (1979).Google Scholar
50. Stapelbroek, M., Griscom, D. L., Friebele, E. J. and Sigel, G. H., Jr., J. Non-Cryst. Solids 32, 313 (1979).Google Scholar
51. Griscom, D. L. and Friebele, E. J., Phys. Rev. B24, 4896 (1981).Google Scholar
52. Friebele, E. J., Griscom, D. L., Stapelbroek, M., and Weeks, R. A., Phys. Rev. Lett. 42, 1346 (1979).Google Scholar
53. Recently, we have performed similar calculations using much larger clusters: the OH groups in Fig. 8 are replaced by O-Si-H3 groups. In these calculations we allowed the six outer oxygen atoms, as well as the two inner silicon atoms, labelled 1 and 2, and the two central oxygen atoms to relax. Furthermore, in light of Rudra's work on the E2’ center we started with one of the silicon atoms in a position similar to Si2 in Fig. 6. The results of these calculations are in complete agreement with our earlier calculations.Google Scholar
54. Baker, J. M. and Robinson, P. T., Sol. State Commun. 48, 551 (1983).Google Scholar
55. Shelby, J. E., J. Appl. Phys. 51, 25892593 (1980).Google Scholar
56 Urnes, S., Trans. Brit. Ceram. Soc. 60, 85 (1961).Google Scholar
57. These reactions had been separately proposed previously. Eq. (5) was proposed by Stapelbroek et al. [50], Eq. (6) by Fowler (private communication), and, Eq. (7) by Friebele et al. [52].Google Scholar
58. Griscom, D. L. in Structure and Bonding in Noncrystalli1 Solids, edited by Revesz, A. G. and Walrafen, G. (in press).Google Scholar
59. Griscom, D. L., Stapelbroek, M., and Friebele, E. J., J. Chem. Phys. 78, 1638 (1983).Google Scholar
60. Waite, T. R., Phys. Rev. 107, 463 (1957).Google Scholar
61. Pfeffer, R. L., Presented at the International Conference on Radiation Effects in Insulators, Guildford, England, 1985.Google Scholar
62. This combination of time and temperature was chosen by considering the geometry of the samples, and the kinetics of O2 diffusion. At 950 C, (Dt)½, where t= 5 days, is half the smallest sample dimension. (R.L. Pfeffer, private communication).Google Scholar