Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-23T22:36:03.619Z Has data issue: false hasContentIssue false

Theory of Doping of Diamond

Published online by Cambridge University Press:  25 February 2011

J. Bernholc
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695–8202
S. A. Kajihara
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695–8202
A. Antonelli
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695–8202
Get access

Abstract

Electronic applications of diamond require control over native defects as well as the ability to dope it p- and n-type. B is an excellent p-type dopant, but n-type doping has proven very difficult. Diamond films have also been very difficult to anneal, indicating a high activation energy for self-diffusion. We have investigated the properties of native defects and impurities through large-scale band structure and Car-Parrinello calculations. We indeed find that the activation energy for self-diffusion is very high in the intrinsic material, but it decreases by as much as 3 eV in either p- or n-type material. P, Li, and Na are shallow donors, but their solubilities are too low for incorporation into diamond through in-diffusion. It is energetically favorable for B and N to dissolve in diamond, which explains their prevalence in natural diamond. The calculations explain for the first time the reasons for the distortion of atoms around N from the fully tetrahedral site, as well as why N is a deep rather than a shallow donor. We also consider the effects of simultaneous doping with N and B on the thermodynamic equilibrium between diamond and graphite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For reviews, see e.g. Loubser, J. H. N. and van Wyk, J. A., Rep. Prog. Phys. 41, 1201 (1978);Google Scholar
Davies, G., Rep. Prog. Phys., 44, 787 (1981).Google Scholar
2. Vavilov, V. S. et al., Sov. Phys. Semicond. 13, 604 (1979); 13, 635 (1979).Google Scholar
3. Braunstein, G. and Kalish, R., Appl. Phys. Lett. 38, 416 (1981).Google Scholar
4. Vavilov, V. S., Radiation Effects 37, 229 (1978).Google Scholar
5. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
6. Bernholc, J., Antonelli, A., Del Sole, T. M., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. Lett. 61, 2689 (1988).Google Scholar
7. Kajihara, S. A., Antonelli, A., Bernholc, J., and Car, R., Phys. Rev. Lett. 66, 2010(1991).CrossRefGoogle Scholar
8. Hamann, D. R., Schlüter, M., and Chiang, C., Phys. Rev. Lett. 53, 1494 (1979).Google Scholar
9. Bachelet, G. B., Hamann, D. R., and Schlüter, M., Phys. Rev. B 26, 4199 (1982).Google Scholar
10. Kittel, C. and Kroemer, H., Thermal Physics, 2nd Edition, Freeman (1980); see alsoGoogle Scholar
Tersoff, J., Phys. Rev. Lett. 64, 1757 (1990).CrossRefGoogle Scholar
11. Zhang, Q., Yi, J.-Y., and Bernholc, J., Phys. Rev. Lett. 66, 2633 (1991).Google Scholar
12. Phelps, A. W. and Koba, R., Proc. First Int. Symp. on Diamond and Diamond-Like Films, Electrochem. Soc. Proc. 89–12, 38 (1989).Google Scholar
13. Geis, M. W., Bull. Am. Phys. Soc 35, 702 (1990).Google Scholar
14. Prins, J. F., Phys. Rev. B38, 5576 (1988); Nuclear Instruments and Methods in Physics Research B 35, 484 (1988).Google Scholar
15. Sandhu, G. S., Swanson, M. L., and Chu, W. K., Appl. Phys. Lett. 55, 1397 (1989).Google Scholar
16. Smith, W. V., Sorokin, P. P., Gelles, I. L., and Lasher, G. J., Phys. Rev. 115, 1546 (1959);Google Scholar
Ammerlaan, C. A. J., Inst. Phys. Conf. Ser. 59, 81 (1981).Google Scholar
17. Messmer, R. P. and Watkins, G. D., Phys. Rev. B 7, 2568 (1973).Google Scholar
18. Astier, M., Pottier, N., and Bourgoin, J. C., Phys. Rev. B 19, 5265 (1979).Google Scholar
19. Mainwood, A., J. Phys. C: Solid State Physics 12, 2543 (1979).Google Scholar
20. Bachelet, G. B., Baraff, B. A., and Schlüter, M., Phys. Rev. B 24, 4736 (1981).Google Scholar
21. Jackson, K., Pederson, M. R., and Harrison, J. G., in Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures, edited by Wolford, D. J., Bernholc, J., and Haller, E. E., Mat. Res. Soc. Proc. 163, 89 (1990).Google Scholar
22. Dabrowski, J. and Scheffler, M., Phys. Rev. Lett. 60, 2183 (1988);Google Scholar
Chadi, D. J. and Chang, K. J., Phys. Rev. Lett. 60, 2187 (1988).Google Scholar
23. Farrer, R. G., Solid State Comm. 7, 685 (1969).Google Scholar
24. Bar-Yam, Y. and Moustakas, T. D., Nature 342, 786 (1989).Google Scholar
25. Kaxiras, E. and Pandey, K. C., Phys. Rev. Lett. 61, 2693 (1988).Google Scholar