Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:26:33.164Z Has data issue: false hasContentIssue false

Theory of Defects, Doping, Surfaces and Interfaces in Wide Gap Nitrides

Published online by Cambridge University Press:  15 February 2011

J. Bernholc
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, [email protected]
P. Boguslawski
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, [email protected]
E. L. Briggs
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, [email protected]
M. Buongiorno Nardelli
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, [email protected]
B. Chen
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, [email protected]
K. Rapcewicz
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, [email protected]
Z. Zhang
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, [email protected]
Get access

Abstract

The results of extensive theoretical studies of group IV impurities and surface and interface properties of nitrides are presented and compared with available experimental data. Among the impurities, we have considered substitutional C, Si, and Ge. CN is a very shallow acceptor, and thus a promising p-type dopant. Both Si and Ge are excellent donors in GaN. However, in AlGaN alloys the DX configurations are stable for a sufficiently high Al content, which quenches the doping efficiency. At high concentrations, it is energetically favorable for group IV impurities to form nearest-neighbor Xcation-XN pairs. Turning to surfaces, AIN is known to exhibit NEA. We find that the NEA property depends sensitively on surface reconstruction and termination. At interfaces, the strain effects on the band offsets range from 20% to 40%, depending on the substrate. The AIN/GaN/InN interfaces are all of type I, while the A10.5Ga0.5 N/A1N zinc-blende (001) interface may be of type II. Further, the calculated bulk polarizations in wurtzite AIN and GaN are -1.2 and -0.45 μC/cm2, respectively, and the interface contribution to the polarization in the GaN/AlN wurtzite multi-quantum-well is small.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Davis, R. F., Physica B 185, 1 (1993).Google Scholar
[2] Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
[3] Nakumura, S. et al., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
[4] See, e.g., Min, B., Chan, C. and Ho, K., Phys. Rev. B 45, 1159 (1992), V. Fiorentini, M. Methfessel and M. Scheffier, Phys. Rev. B 47, 13353 (1993), E. Albanesi, W. Lambrecht and B. Segall, J. Vac. Sci. Technol. B 12, 2470 (1994), A. Rubio, J. Corkill and M. L. Cohen, Phys. Rev. B 49, 1952 (1994), C. Yeh, S. Wei and Z. Zunger, Phys. Rev. B 50, 2715 (1994), A. F. Wright and J. S. Nelson, Phys. Rev. B 51, 7866 (1995) and M. Palummo, L. Reining, R.W. Godby, C.M. Bertoni and N. Bornsen, Europhys. Lett. 26, 607 (1995). For a general reference, see W. Lambrecht and B. Segall, in Properties of Group III Nitrides, edited by J. Edgar, EMIS Data Series (lEE, London, 1994), chapt. 5.Google Scholar
[5] Boguslawski, P., Briggs, E. M., and Bernholc, J., Phys. Rev. B 51, 17255 (1995).Google Scholar
[6] Boguslawski, P., Briggs, E. M., and Bernholc, J., Appl. Phys. Lett., July (1996).Google Scholar
[7] Boguslawski, P. and Bernholc, J., to be published.Google Scholar
[8] Chen, B., Rapcewicz, K., Zhang, Z. and Bernholc, J., to be published (1996).Google Scholar
[9] Nardelli, M. Buongiorno, Rapcewicz, K. and Bernholc, J., to be published (1996).Google Scholar
[10] Rapcewicz, K., Chen, B., Yakobson, B. and Bernholc, J., to be published (1996).Google Scholar
[11] Benjamin, M. C., Wang, C., Davis, R. F. and Nemanich, R. J., Appl. Phys. Lett. 64, 3288 (1994).Google Scholar
[12] Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
[13] Li, G. and Rabii, S., unpublished (1992).Google Scholar
[14] Gonze, X., Stumpf, R., and Scheffler, M., Phys. Rev. B 44, 8503 (1991).Google Scholar
[15] Bachelet, G., Hamann, D. R. and Schliiter, M., Phys. Rev. B 26, 4199 (1982).Google Scholar
[16] Hamann, D. R., Schliiter, M. and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
[17] Hamann, D. R., Phys. Rev. B 40, 2980 (1989).Google Scholar
[18] Li, G., and Rabii, S., unpublished (1992).Google Scholar
[19] Froyen, S., Phys. Rev. B, 39, 3168 (1989).Google Scholar
[20] Louie, S., Froyen, S. and Cohen, M.L., Phys. Rev. B 26, 1738 (1982).Google Scholar
[21] Chadi, D. J. and Chang, K. J., Phys. Rev. Lett. 61, 873 (1988).Google Scholar
[22] Fisher, S., Wetzel, C., Haller, E. E., and Meyer, B. K., Appl. Phys. Lett. 67, 1298 (1995).Google Scholar
[23] Bauer, R. and Margaritondo, G., Physics Today, 40, 27 (1987).Google Scholar
[24] Lin, M.-E., Sverdlov, B. N., Strite, S., Morkoq, H. and Drakin, A.E., Electron. Lett. 29, 1759 (1993).Google Scholar
[25] Wright, A. F. and Nelson, J. S., Phys. Rev. B50, ‘2159 (1994).Google Scholar
[26] Lee, J., Aaronson, H. and Russel, K., Surf. Sci. 51 302 (1975) and E. Arbel and J. Cahn, Surf. Sci. 51, 305 (1975).Google Scholar
[27] Chetty, N. and Martin, R.M., Phys. Rev. B 45, 6074 (1992), 45, 6089 (1992)Google Scholar
[28] Zangwill, A., Physics at Surfaces, (Cambridge University Press, Cambridge, England, 1988).Google Scholar
[29] Zhang, Z., Wensell, M., and Bernholc, J., Phys. Rev. B. 51, 5291 (1995).Google Scholar
[30] See, for instance, MorkoQ, H. et al., J. Appl. Phys. 76, 1363 (1994), M. Paisley and R.F Davis, J. Cryst. Growth 127, 136 (1992).Google Scholar
[31] Wei, S. and Zunger, A., Phys. Rev. Lett. 59, 144 (1987).Google Scholar
[32] Martin, G. et al., Appl. Phys. Lett. 65, 610 (1994).Google Scholar
[33] Fiorentini, V., Methfessel, M. and Scheffier, M., Phys. Rev. B 47, 13353 (1993).Google Scholar
[34] Albanesi, E., Lambrecht, W. and Segall, B., J. Vac. Sci. Technol. B 12, 2470 (1994).Google Scholar
[35] Peressi, M., Baroni, S., Baldereschi, A. and Resta, R., Phys. Rev. B 41, 12106 (1990).Google Scholar
[36] Ashcroft, N. W. and Mermin, N. D., Solid State Physics (Saunder College, Philadelphia 1976). Ch. 27.Google Scholar
[37] Smith, D., Solid State Commun. 57, 919 (1986).Google Scholar
[38] Bykhovski, A., Gelmont, B. and Shur, M., Appl. Phys. Lett. 63, 2243 (1993); J. Appl. Phys. 74, 6734 (1993).Google Scholar
[39] Satta, A., Fiorentini, V., Bosin, A., Meloni, F. and Vanderbilt, D., preprint (1996).Google Scholar
[40] Posternak, M., Baldereschi, A., Catellani, A. and Resta, R., Phys. Rev. Lett. 64, 1777 (1990).Google Scholar