No CrossRef data available.
Article contents
Theory and Simulation of Fiber Texture Formation and Rheology of Carbonaceous Mesophase Fibers
Published online by Cambridge University Press: 15 March 2011
Abstract
Carbonaceous mesophases are discotic nematic liquid crystals that are spun into high performance carbon fibers using the melt spinning process. The spinning process produces a wide range of different fiber textures and cross-sectional shapes. Circular planar polar (PP), circular planar radial (PR) textures, ribbon planar radial (RPR), and ribbon planar line (RPL) textures are ubiquitous ones. This paper presents, solves, and validates a model of mesophase fiber texture formation based on the classical Landau-de Gennes theory of liquid crystals, adapted here to carbonaceous mesophases. The effects of fiber cross-sectional shape and elongational flow on texture formation are characterized. Emphasis is on qualitative model validation using existing experimental data [1, 2]. The results provide additional knowledge on how to optimize and control mesophase fiber textures.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002